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What is reasoning (1)
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1. Manipulate representations

2. To solve a problem
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Reasoning

Representation

Predilction
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Many types of representations and of operations

* Experiments of Shepard

http://www.ulb.ac.be/psycho/fr/docs/museum/Experiments/Shepard/Shepard.html
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Many types of representations and of operations
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Many types of representations and of operations

1+24+3+...+4n = |

8/111



Many types of representations and of operations

14+34+5+...+2n—1) = n?
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On a boat, suppose that two measurements of distance are
made three minutes apart, and that 1500 yards have been

covered

A nautical mile = 2000 yards

What is the speed of the boat in knots (nautical miles / hour)?



e Solution 1

d=vxt = v-= _t (prior K on algebra)

— d = 1500 yards = 1500/2000 mille
— t=3mn = 3/60 hour

w v=0.75/0.05 =15 miles/h
Rks :

* Operations can be carried out in different orders

* They must be organized
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e Solution 2

— Same but without external memory in order to store the intermediate

results

— The difficulty lies in ordering the operations
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Figure 3.3 A three-scale nomagram.

Solution 3
— Use of a nautical rule
— Draw a line between the time and the distance to get the speed
— The representation allows one to get the result easily
— But it is highly specialized
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e Solution 4: the 3mn rule

— 3 mn=1/20 hour

— 100 yards = 1/20 mile

— You just have to remove the 2 last digits of the distance (e.g. 1500 yards)
to get the speed -> 15 knots

— But the measurements have to be made three minutes apart
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Lesson

* Areasoning system
— Must chose an appropriate representation

— And select and organize the right operations
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Blending effect [Fauconnier & Turner]

The Riddle of the Buddhist Monk:

* A Buddhist monk begins at dawn one day walking up a
mountain, reaches the top at sunset, meditates at the top
overnight until, at dawn, he begins to walk back to the foot of

the mountain, which he reaches at sunset.

 Make no assumptions about his starting or stopping or about his

pace during the trips.

* Riddle: is there a place on the path that the monk occupies

at the same hour of the day on the two trips?
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Reasoning

* Entails

— Inferencing information that is not explicitly given in the initial
representation

— Jack is married either to Francesca or to Sophie
Sophie is not married

= Jack is married to Francesca

— John looks at Isabel and Isabel looks at Kevin
John is married, and Kevin is not married

= A married person looks at a non married person
18 /111



Many forms of reasoning

Deduction
Induction

_ With rules that define
Abduction legiti .

egitimate operations
Analogy _
Provide some guarantees

Blending on the results

Probabilistic reasoning
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Propositional logics: inference rules

Modus ponens
AND-elimination
AND-introduction
OR-introduction
Elimination double negation
Unitary Resolution

Resolution
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1. Manipulate representations

2. To solve a problem



Prodigy

* Steve Minton

Initial State,
Goal State
Knowledge

Plan
> [amer :>;\

Learned

Crecun,
Model P
(Traces)

] ( Learning J =/

From [Ankuj Arora et al. (2019). “A review of learning planning action models” 22 / 111



ACM SIGART Bulletin, 1991, vol. 2, no 4, p. 51-55

PRODIGY: An Integrated Architecture for Planning and Learning

Jaime Carbonell, Oren Etzioni*, Yolanda Gil, Robert Joseph
Craig Knoblock, Steve Minton!, and Manuela Veloso

PRODIGY’s basic reasoning engine is a general-purpose prob-
lem solver and planner [10] that searches for sequences of op-
erators (i.e., plans) to accomplish a set of goals from a spec-
ified initial state description. Search in PRODIGY is guided
by a set of control rules|/that apply at each decision point.

PRODIGY’s rellance on explicit| control rules, which can be
learned for specific domains, distinguishes it from most do-
main independent problem solvers. Instead of using a least-
commitment search strategy, for example, PRODIGY expects
that any important decisions will be guided by the presence
of appropriate| control knowledge., If no control rules are rel-
evant to a decision, then PRODIGY makes a quick, arbitrary
choice. If in fact the wrong choice 1s made, and costly back-
tracking proves necessary, an attempt will be made to learn
the [control knowledge that must be missing. -




Illustration: LEX (Tom Mitchell)

Génération
de problémes

Calculer la primitive de :
[ 3x cos(x) dx

[ Résolution

de problémes }\

Généralisation }

Critique }
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Illustration: LEX (Tom Mitchell)

Calculer la primitive de :
[ 3x cos(x) dx

)

Résolution
de problémes

./

&~

[ 3x cos(x) dx

{ Génération

de problémes

« \ dv = cos(x) dx

3x sin(x) - [ 3x sin(x) dx

Oﬂ/ \\\
Y

3xsin(x) - 3 [ x sin(x) dx

-
-

N s
3x sin(x) - 3x cos(x) dx + C

-
-

{ Critique

|
B
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Illustration: LEX (Tom Mitchell)

Génération
de problémes

Calculer la primitive de :
[ 3x cos(x) dx

Résolution
de problémes

)
./

Généralisation }

[ 3x cos(x) dx P2 avec

’,/’/ \ u=3x
a~” dv = cos(x) dx

Un des exemples positifs proposeés :

3x sin(x) - f 3x sin(x) dx f 3x cos(x) dx
. — Appliquer OP2 avec :
OP1 / N u=73x
. dv = cos(x) dx

-

3xsin(x) - 3 [ x sin(x) dx |
g \ oP5 Critique
3x sin(x) - 3x cos(x) dx + C
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Illustration: LEX (Tom Mitchell)

Génération

de problemes Espace des versions pour l'utilisation de

l'opérateur OP2 :

S ={ [ 3x cos(x) dx — Appliquer OP2
avec : u = 3x
dv = cos(x) dx}
G ={ [ f1(x) f2(x) dx — Appliquer OP2
avec : u="f1(x)
dv = f2(x) dx}

Calculer la primitive de :
[ 3x cos(x) dx

Résolution
de problémes

Généralisation

[ 3x cos(x) dx P2 avec

’,/’/ \ u=3x
Vo dv = cos(x) dx

Un des exemples positifs proposeés :

3x sin(x) - f 3x sin(x) dx f 3x cos(x) dx
. — Appliquer OP2 avec :
OP1 / N u=73x
. dv = cos(x) dx

3xsin(x) - 3 [ x sin(x) dx

e \ OP5 Critique
3x sin(x) - 3x cos(x) dx + C 2;;,7 /111
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Learning from a single example

a b ¢c d e f g h

Explanation-Based Learning

1. Asingle example

- N W A O N @
- N W A U N @

2. Search for a proof of a « fork »
a b ¢c d e f g h

a b ¢c d e f g h

3. Generalization

;;;;;

- N WA U N
- N W A U N

28 /111



Explanation-Based Learning

Ex : learn the concept stackable(Objectl, Object2)

* Domain theory :

(Tl) : weight(X, W) :- volume(X, V), density(X, D), W is V*D.
(T2) : weight(X, 50) :- is_a(X, table).
(T3) : lighter than(X, Y) :- weight(X, Wl1), weight(X, W2), Wl < W2.

* Operationality constraint:

e Concept should be expressible using volume, density, color, ...

* Positive example (solution) :

on(objl, obj2). volume (objectl, 1).
is_a(objectl, box). volume (object2, 0.1).
is_a(object2, table). owner (objectl, frederic).
color (objectl, red). density(objectl, 0.3).

color (object2, blue). Made of(objectl, cardboard).
made of (object2, wood). owner (object2, marc).

29 /111



Explanation-Based Learning

empilable(x, y)

Cl1 empilable(pl, p2)

plus_léger(pl, p2)
plus_léger(x, y)

T3 plus_léger(pl, p2) {x/p1, y/p2}
poids(pl,yl) inf(yl,y2) poids(p2,y2)
_ _ _ _ poids(x,yl) _ _ _ inf(yl,y2) _ _ _ _ _poids(y,y2) _
poids(pl,v1*dl) oids(p2,5
T1 T2 . (p )
/\’<” vitdizyi) {y/p2, 5/y2}
volume(pl,vl) densité(pl,dl) est_un(p2,coin_table)
volume(x,v1) densité(x, d1) inf(vl*d1,5) est-un(y, coin-table)

Generalized search tree resulting from regression of the target concept in the proof tree

by computing at each step the most general literals allowing this step.
y p g P g g P 30/ 111



Explanation-Based Learning

* Induction from a single example

— ... and a strong domain theory
* Language of logics

e Operators for reasoning (deduction, ...)

Now used in « solvers » of SAT problems
And accelerate them immensely
because the “data” is clean
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Lesson (1-1)

* Reasoning can be used in order to learn

— To recognize concept

* By abstracting the conditions of membership

— To accelerate problem-solving

* By compiling search procedures
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Lesson (1-2)

* Reasoning can be used in order to learn

* Which does not mean that the results
— Prediction

— Learned hypothesis

Should be automatically readily interpretable

More on this later
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Machine Learning nowadays

A path to fast thinking
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Thinking: fast and slow

Copyrighted Material

e Daniel Kahneman \

. Thinking,
fast
and slow

DANIEL
KAHNEMAN

THE MOST INFLUENTIAL BOOK YOU'LL READ THIS YEAR

NOWA MAJOR BESTSELLER
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Thinking: fast and slow

* Type 1 process: Fast

Fast

Effortless

Parallel

Unconscious

Automatic

Associative

Contextualized

Heuristic

Intuitive

Implicit

Nonverbal

Independent of general intelligence
Independent of working memory

Shared with non human animals

Type 2 process: Slow
—  Slow
—  Effortful
—  Serial
— Conscious
— Controlled
— Rule-Based
— Decontextualized
— Analytic
— Reflective
—  Explicit
— Linked to language
— Linked to general intelligence
— Involving working memory

— Specifically human
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Machine Learning as ...

... Learning a function from an input space X to an output space Y
. |

Cats vs. dogs




Supervised learning

Given a training set

f

Sm = {(X17y1)7 (X27y2)7 R (Xiayz')a IR (X’maym)}
h

* Find an hypothesis i € H suchthat h(x;) ~ vy;

* Hoping that it generalizes well :

VxeX: hx) =~y
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One example that tells a lot ...

*  Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

* They belong either to class ‘+" or to class -’

40 /111



One example that tells a lot ...

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Description Your prediction | True class
1 large red square -
1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
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One example that tells a lot ...

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description Your prediction True class
1 large red square -
1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +

How many possible functions altogether from Xto Y ?

22%= 216 = 65 536

How many functions do remain after 6 training examples? 210 = 1024
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*  Examples described using:

15

One example that tells a lot ...

Description Your prediction True class
1 large red square -
1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
1 small green square -
1 small red square +
2 large green squares +
2 small green squares +
2 small red circles +
1 small green circle -
2 large green circles -
2 small green circles +

1 large red circle

2 large red squares

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

How many
remaining
functions?

43 /111



* How to chose an hypothesis?



A statistical theory of induction

What performance do we aim at?

e Cost of a prediction error

— The loss function

ﬁ(h(x), y)

What is the expected cost if | choose h?

— Expected cost: the “true risk”

R(h) = /X ny(h(X),y) Pry(X,y) dxdy
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A statistical theory of induction

* The empirical performance of h

— E.g. No prediction error on the training sample S

Ay
ot The “empirical risk”
1 S | om —
. X
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Statistical study for | {| hypotheses

It leads to:
e

_/N\

log |H| + log 5
m

Vhe H,¥6<1: P™|R(h) < R(h) +

IA

> 1-90

The Empirical Risk Minimization principle

is sound only if there exists a limit (a bias) on the expressivity of H
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Learning — completing data with necessary a aprioris
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HOW TO ... devise learning algorithms

1. Define an appropriate regularized (inductive) criterion
1. Translate the cost of errors of prediction in the domain into a loss function

2. Define a regularization term that expresses
assumptions about the underlying reqularities of the world

3. If possible, make the resulting optimization problem a convex one

heH N

~

[ 1«
hopt = ArgMin [E;l(h(x,),yz) + A reg(H) .

/ bias on the world

Vv
empirical risk

2. Use or develop an efficient optimization solver
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Learning sparse linear approximator

* The hypothesis is of the form h(x) = w - x

* A priori assumption: few non zero coefficients

. . * . = 2
Ridge regression Wiidge = Argmm{Z(yi -wx;)" + AHWH%}
w i=1
i 2
Lasso regression Wiasso = Argmin{Z(yz' - wx;)" + >\HWH1}
w i=1
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Regularized
empirical risk

Surrogate
expression of
the regularized
empirical risk

Optimization

du chapitre [3] Ainsi, étant donnés un échantillon source étiqueté S = {(x{,yf)}",

constitué de m exemples i.i.d. selon Ps et un échantillon cible non étiqueté T = {(x})}",

composé de m exemples i.i.d. selon Dr, en posant S, = {x7}, I’échantillon S privé de

ses étiquettes, on veut minimiser :

min cm Rs(Gp, ) +am disy, (4, T) +KL(pul|m0), 7
ou dis,,(S,, T.) = E Rs(hh)— E  Rr,(hh")| est le désaccord empi-
1o (50, T) ‘WW ()=  E Rr(uH) p

rique entre S, et T, specialisé a une distribution p,, sur l'espace ‘H des classifieurs
linéaires considéré. Les réels a > 0 et ¢ > 0 sont des hyperparametres de 1’algorithme.
Notons que les constantes A et C du théoreme |7.7| peuvent étre retrouvées a partir de
n‘importe quelle valeur de a et c. Etant donnée la fonction £g;s(x) = 2 Cp(x) Cpee( —2x)
(illustrée sur la figure , pour toute distribution D sur X, on a:
! !
(h,h’)E~pw2 Rp(h,h") = xED (h}r’)F:pwz I [1(x) # h'(x)]

=2E E I[h(x)=11[K(x)=-1
L [(x) = 1] T[K'(x) ]

— — I P —
= 2xED h~F}w I[h(x) =1] h'Epw I[h'(x)=—1]

=2, o (4 ||>) e - <T|VQ|T>)
-5, ‘(7).

Ainsi, trouver la solution optimale de 1’équation revient a chercher le vecteur w

qui minimise :
| e () - ()| +

wi?

-+

czem ( <T|V'S”5>) (7.6)

2

L'équation précédente est fortement non convexe. Afin de rendre sa résolution plus
facilement controlable, nous remplagons la fonction fgg(-) par sa relaxation convexe

(ks (+) (comme pour PBGD3 et illustrée sur la figure [7.1). L'optimisation se réalise

ensuite par une descente de gradient. Le gradient de 1'équation 7.6|étant :

51/
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A lot of “Lamppost theorems”

Theorems that guarantee that:

— If the world obeys my a priori assumptions

— Then the learning algorithm will end up with a

good hypothesis (closed to the “real” one)

— Otherwise learning can lead to very bad
hypotheses

(e.g. If the world is not sparse)

111




Interpreting




Induction and its illusions
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Induction and illusions

Crater or hill?
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Lesson (2-1)

* In the current ML methods, prior knowledge takes the form of
imposed bias on the type of regularities that can be captured

* No reasoning takes place during learning
— Just an exploration of the hypothesis space

— Subject to an optimization criterion
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224x224

Of course there are biases in the current machine learning
algorithms and techniques

But it seems that in the new paradigm there is no place nor need

for reasoning
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Maybe we don’t yet understand the biases that are entailed in
deep Neural Networks

See C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals (ICLR, May 2017).
“Understanding deep learning requires rethinking generalization”

But what does it have to do with reasoning?
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A car in a swimming pool

.ornocar..?

Is this less of a car
because the context is wrong?

[Léon Bottou (ICML-2015, invited talk) « Two big challenges in Machine Learning »]
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Adversarial learning

Central question: which guarantees ?

Boxer: 0.40 Tiger Cat: 0.18 Airliner:

(a) Original image (b) Adversdrial image

117?

[Selvaraju et al. (2017) « Grad-CAM: Visual explanations from deep networks via gradient-based localization »]

660/111



The case of AlphaGo

Plays like an “alien” S L

Stunning moves

A revolution for go playing

Effervescence in the go playing circles

AlphaGo An. The Hand Of God

one CGoban: Lee Sedol [9

v Lee Sedol [9d] vs. AlphaGo
LC ) 4 Move 65 (B n15): White to play

Alayperson's Guiac .. Alll{m e ol e e et e i e el 11

The Google Deepmind AlphaGo Challenge Match 19 ] I | | | 19
Brady Daniels, March 2016 18 i — 18]
17 ‘ y 4 17 |

1. Intro to Go and Computer Go 16 __‘_‘._‘ ) i —‘ 16
2. Amazing Moves and Adjustments 15 Y r \ 15 J

3. Significance of AlphaGo and Deep Learning
4. Impact on the Go World
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The case of AlphaGo: to understand its plays

Fan Hui, Gu Li, Zhou Ruyang (very strong players at go) are converting themselves

in the analysis of the games played by AlphaGo

* Kind of exegesis. Explanations a posteriori

* Necessary for

— Communication

— Teaching

And even AlphaGo can make mistakes
62 /111



Lesson (2-2)

* For various reasons, sometimes, there are needs for:

— Justification of the result

— Transparency of the learned hypothesis
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The future of Machine Learning

What is reasoning (2)
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Reasoning ...

... comes after the fact

* Most of our inferences result from specialized modules with little
access to their functioning

— Perception

— Memory access (and reconstruction)

— Interpreting other’s states of mind

We use reasons to justify ourselves and convince others

66/ 111



Finding reasons

* Try to identify bits of information that did play a role

in our beliefs and decisions

67 /111



The “bystander effect”

People were told that they would participate in a market study
on games. Participants were individually welcomed at the door
of the lab by a friendly assistant who took them to a room
connected to her office, gave them a questionnaire to fill out,
and went back to her office, where she could be heard shuffling
papers, opening drawers, and so on.

A while later, the participants heard her climb on a chair and
then heard a loud crash and a scream, “Oh, my God, my foot ...
[...can’t move it. Oh ... my ankle! ... | can’t get this ... thing ... of

V4

me.

68 /111



In one condition, the participant was alone in the room

when all this happened.

In another condition, there was a man in the room who acted as

if he were a participant too.
This man hardly reacted to the crash and the scream.

He just shrugged and went on filling out the questionnaire.

69 /111



The “bystander effect”

What do you expect ?

70/ 111



The “bystander effect”

What do you expect ?

* Inthe first condition, 70% of the participants intervened to help.

* Inthe second condition, only 7% did

71/ 111



The “bystander effect”

After all this the participants were interviewed about their reactions.

e First condition, typically: “I wasn’t quite sure what had happened;

| thought | should at least find out.”

e Second condition, typically the participants thought that whatever had

happened was not too serious

Not one ever mentioned the presence of the other participant!!

And even more, they claimed this presence had no influence at all

on their decision
72 /111



* The reasons invoked come after the fact of deciding

* Indeed they are blatantly faulty

* Reasons are justifications

73 /111



* If | base my “intuitions” on good reasons

— Other actors will increase their trust in my claims

* Reasons
1. Premises or important influencing factors for the final decision

2. The reasoning that uses them. Others should be able to duplicate it

— Both together should lead to the same final decision deemed to be
explained
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Reasoning can be used to solve problems and then be the basis

of learning in order to gain efficiency: compilation of knowledge

But it is not required to learn

Reasoning is required when

— sub-systems are interacting in a repeated manner

— Or there are interactions with humans
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An accident of an (autonomous) car

On May 7th, 2016, a Tesla car in autopilot mode collided with a semi-

trailer across the road

* The analysis reveals that:

— The radar did detect the semi-trailer but there were numerous road signs
on the road with a radar "signature” similar to one of a car

— The camera was unsure of its detections due to a dazzling milky sky (the
semi-trailer was white).
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Combination of adaptive sub-systems and justifications

The analysis reveals that:
— The radar did detect a semi-trailer but ...

— The camera was not sure of its detection of a semi-trailer because ...

What if the radar had said: “Even though | am not quite sure, | do not believe it to be a
semi-trailer because it looks to me like a road sign of which | have detected many on
this road.”

What if the camera had said: “Even though | am not quite sure, | do not believe it to
be a semi-trailer because the color is close to the color of the sky which is milky
today.”

What if the radar and camera had a long history of such exchanges and were
influencing each other ...
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Interactions between learning modules

Adaptive advertising placement system

b""]g" organic apples
*  Two sub-systems

< Organic | ust Apples
E iHerb.cor

Sidebar

) ; - t Organic Fruit Deal $29.99 &
ated #1 Online Retailer - Great Value and Fast Shipping H wiwChemyMoonFams.comFrut &
ated on PriceGrabber (43 reviews) H

— One placing advertising Iinks 'e e P @reews) ! Egﬁiﬁ?&"hﬁ&dﬁﬁfgé&ﬂﬂﬂmf

= chemymoonfarms.comis rated, H
H on Bizrate (106 reviews)
Comparing apples to organic apples - Boston.com H H
articles.boston.com/2008-11-10/news/29271514_1_organic-food... = Organic Fruit Delivery

Nov 10, 2008 - With the recession breathing down our necks, you may be looking for + TheFruitCompany.comyOrganic

JE— T h e Ot h e r' O n e C h O O S i n g t h e a d d s ways (o cut the household budget without seriously compromising family well-being. ... : wmﬁé;ﬂsgﬁpﬁﬁﬁm :

Five Reasons to Eat Organic : Pesticides, Healthy ... H . .
23 i i = Organic Apples atAmazon &
www.forbes.cony... /23/five-reasons-to-eat-organic-apples-pesticides.. :

Apr 23, 2012 - There are good reasons to eat organic and locally raised fruits and i YwwAmazon.com

1 Low prices on Organic Apples. H
vegetables. For one, they usually taste better and are & whole lot fresher. Yet... b Qualied orders over $25 shipfiee &
5 s

0

* Mutually influencing each other
— Each one is based on click data
— Which also depends on the intervention of the other system

— And other uncontrolled factors (price, user requests, ...)

[L. Bottou et al. «Counterfactual Reasoning and Learning Systems: The
Example of Computational Advertising », JMLR, 14, (2013), 3207-3260]
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Knowledge as input to ML

e Convolutional Neural Networks

— Knowledge embedded in the architecture of the network

— CAR
— TRUCK
— VAN

d [j — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

From https://towardsdatascience.com/a-comprehensive-guide-to-convolutionaI-neuraI-networks-the-eli5-way-3bd2b116£1§63
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Knowledge as input to ML

e Convolutional Neural Networks

— Knowledge embedded in the architecture of the network

FEATURE LEARNING CLASSIFICATION

* How to obtain an explanation

— About the procedure? »  Forgetit! It is opaque

— About the premises?
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What kind of “reasons” can we extract?

* The hypothesis returned: a decision function
— Recommending a movie
— Recommending a life partner
— Written character recognition
— Recognize traffic signs
— Decide the value of a position in go
— Predict the risk of crime occurrence
— Decide if someone should get a loan

— Decide to hire or not someone
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The case of deep NNs

Various approaches to “explain” the decision-making of
pre-trained models

1. Feature-based explanations methods

» Attribute the decision to important features in the input space

2. Sample-based explanation methods

e Attribute the decision to previously observed samples

3. Concept-based explanation methods

» estimates the importance of a concept (intermediate category /

intermediate layers) to a given class
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The case of deep NNs

1. Feature-based explanations methods

* Attribute the decision to important features in the input space

Boxer: 0.40 Tiger Cat: 0.18 Airlinert 0.9999 Boxer: 1.1e-20 Tiger Cat: 6.5e-17
(a) Original image (b) ers¢fial image (C) Grad-CAM “Dog” (d) Grad-CAM “Cat”

1?7?

[Selvaraju et al. (2017) « Grad-CAM: Visual explanations from deep networks via gradient-based localization »]
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The case of deep NNs

2. Sample-based explanation methods

» Attribute the decision to previously observed samples

test id3092 train id13033 train id12728 train id12742
grizzly bear predicted as grizzly bear predicted as grizzly bear predicted as grizzly bear predicted as

grizzly bear grizzly bear grizzly bear grizzly bear

] : p

a a

£ ER

© ©

X X

] L

w w

= =

E =

) 0

S ©)

o a

train id21249 train id1228 train id20730
polar bear predicted as beaver predicted as pig predicted as
polar bear beaver pig

NEGATIVE Example
NEGATIVE Example
NEGATIVE Example

[Chih-Kuan Yeh et al. (2018) « Representer Point Selection for Explaining Deep Neural Networks »,
NIPS-2018] 85/ 111



The case of deep NNs

3. Concept-based explanation methods

* estimates the importance of a concept (intermediate category)
to a given class

Bix) P(P(x), c \
Feature Concepts Projected

W= Iayer - Feature Layer
; - Whale Zebra
—_— — ‘ — —_— Bat

- . - m ’ Salientto ConceptSHAP = 0.5, important to zebra
‘ - - “ - - - 52 Salientto @)  ConceptSHAP = 0.3, important to blue whale

L2

ConceptSHAP = 0.2, important to bat

[Chih-Kuan Yeh et al. (2019) « On concept-based explanations in deep neural networks »]

86 /111



The case of deep NNs

3. Concept-based explanation methods

* estimates the importance of a concept (intermediate category)
to a given class

oA P(®(x).c) |
— — \‘ Concepts Projected
P
[
|}

P(x)
Feature
= layer Feature Layer
/i I I L 4 I I Whale Zebra
—_— — — — ' — - — —_— B
at

- - - m ‘ Salient to ConceptSHAP = 0.5, important to zebra
EEETEEEE
- a - !a - - ‘ Salient to ' ConceptSHAP = 0.2, important to bat

Salient to . ConceptSHAP = 0.3, important to blue whale

» Concepts are taken (by clustering) at an intermediate layer of the NN

e Each concept should be interpretable and semantically-meaningful

[Chih-Kuan Yeh et al. (2019) « On concept-based explanations in deep neural networks »]
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The case of deep NNs

Concepts

Concept-based explanation
methods

* estimates the importance of a
concept (intermediate category)

to a given class
stripe 2

* Notion of completeness of the

leaf/
concepts branch
* Concepts are learned after grass
training
thick
snow

[Chih-Kuan Yeh et al. (2019) « On concept-based explanations in deep neural networks »]

Nearest Neighbors

SHAP

0.126

0.120

0.124

0.121

0.08

0.109

0.105

0.124

Related Classes

horse, lion

panda, hippopotamus, ox,
wearus, wolf

bobcat, collie,
rabbit, zebra

antelope, bat, deer, hamster,
mouse, tiger,

grizzly-bear, raccoon

dalmatian, leopard,
otter, squirrel

blue-whale, dolphin, mole,
spider-monkey

persian-cat, polar-bear,
rhinoceros, siamese-cat, skunk
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What kind of “reasons” can we extract?

* Interpretability of the decision function

— Decision trees seem readily interpretable
— Linear decision functions are less so

— Random forests are much less still

— SVM

- Require a difficult analysis

— Neural Networks
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Knowledge as input to ML

Data [ Algorithm J

* Knowledge in the learning algorithm N

Knowledge

— Constraints on the hypothesis space: representation bias

® Jl@

h* = ArgMin [REmp(h) +)\reg(h)]
heH

Looking for sparse linear hypotheses

1 ™m
h* = ArgMin [—Z S ]
heH U
//

Favors hypotheses with few non null coefficients 91 /111



Knowledge as input to ML

Data Algor ithm
( )

* Knowledge in the learning algorithm \ /

Knowledge

® J]@

Looking for sparse linear hypotheses

1 m
p* = ArgMin [—Z yi) + A |IAlh |
heH U r—
//

Favors hypotheses with few non null coefficients

“Hey, | am looking for sparse hypotheses, and if this fits the data, | am satisfied”
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Explaining any classifier?

[Ribeiro et al. (2016)]: LIME (Local Interpretable Model-agnostic Explanations)
— An explanation is a local linear approximation of the decision function

— Whereas the model may be very complex globally, it is easier to approximate it around the

vicinity of a particular instance.

— While treating the model as a black box, perturb the instance we want to explain and learn a
sparse linear model around it, as an explanation.

I

) i+,, “Explaining” the instance +
’ _|_l ® sample instances around +, and weight them
4 O according to their proximity to + (weight here is
+ @ .0 + indicated by size).
" A0 Then learn a linear model (dashed line) that
1 . approximates the model well in the vicinity of +
]
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Explaining any classifier?

[Ribeiro et al. (2016)]: LIME (Local Interpretable Model-agnostic Explanations)

/ sneeze | U Explainer [ sneeze |
— weight (LIME)

hea%ache | headache | -
\ no fatigue no fatique

age

Model Data and Prediction Explanation Human makes decision

Figure 1: Explaining individual predictions. A model predicts that a patient has the flu, and LIME highlights
the symptoms in the patient’s history that led to the prediction. Sneeze and headache are portrayed as
contributing to the “flu” prediction, while “no fatigue” is evidence against it. With these, a doctor can make
an informed decision about whether to trust the model’s prediction.
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Explaining any classifier?

[Ribeiro et al. (2016)]: LIME (Local Interpretable Model-agnostic Explanations)

(a) Original Image (b) Explaining FElectric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)
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Explanations in Expert Systems

Why should tetracycline not be prescribed to a child under 8 years of age?
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Explanations in Expert Systems

Why should tetracycline not be prescribed to a child under 8 years of age?

Supporting knowledge
Drug deposition on developing bones
—» Permanent blackening of the teeth
—» Socially undesirable staining

—» Do not give tétracycline to children under 8 years of age

Notion of undesirable secondary effects

Causality relationship

Explanation obtained by “decompiling” the initial reasoning
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Explanation-Based justification: decompiling

empilable(x, y)

Cl1 empilable(pl, p2)

plus_léger(pl, p2)
plus_léger(x, y)

T3 plus_léger(pl, p2) {x/p1, y/p2}
poids(pl,yl) inf(yl,y2) poids(p2,y2)
_ _ _ _ poids(x,yl) _ _ _ inf(yl,y2) _ _ _ _ _poids(y,y2) _
poids(pl,v1*dl) oids(p2,5
T1 T2 . (p )
/\’<” vitdizyi) {y/p2, 5/y2}
volume(pl,vl) densité(pl,dl) est_un(p2,coin_table)
volume(x,v1) densité(x, d1) inf(vl*d1,5) est-un(y, coin-table)

Generalized search tree resulting from regression of the target concept in the proof tree

by computing at each step the most general literals allowing this step.
y p g P g g P 98 /111



Reasons not always in need

 When interpretability is NOT needed?
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Reasons not always in need

 When interpretability is NOT needed?

— When low risk associated with the decision

* E.g. recommendation for a movie

— When good guarantees on performance exist

* E.g. character recognition
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When reasons are in need

* When interpretability IS needed?
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When reasons are in need

* When interpretability IS needed?

1.  With high risk decisions

 E.g. chirurgical operation
* E.g. shutting down a nuclear plant

 E.g. autonomous vehicle
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When reasons are in need

* When interpretability IS needed?

1.  With high risk decisions

 E.g. chirurgical operation
* E.g. shutting down a nuclear plant

 E.g. autonomous vehicle
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When reasons are in need

* When interpretability IS needed?

2. Satisfying curiosity (what science is about)

 E.g. explain surprising results
 E.g. when no easy explanation exists

* E.g. when the decision function must be included in a larger inference system
(a domain theory)
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When reasons are in need

* When interpretability IS needed?

3. Debugging / exchanges between sub-systems

* E.g. why is that decision wrong (counterfactual)

* E.g. if a bicycle is recognized because it has two wheels,
what if one is hidden behind side bags?

* E.g. why the system seems gender biased?
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A paradox

An interpretable system can be manipulated

* E.g. if someone knows that a loan is granted if you have more

than 2 credit cards

In order not to be manipulated,

the predictive system must use causal factors
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|dentification of causal relationships

In images

(a)) ANM X Y. (b)ANMY —» X

[ David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Schélkopf, and Léon Bottou.
« Discovering causal signals in images ». arXiv preprint arXiv :1605.08179, 2016. ]
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Outline

What is reasoning (1)

Machine Learning nowadays: a path to fast thinking

The future of Machine Learning: what is reasoning (2)

Conclusion
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Claims about machine learning and reasoning

Reasoning does not need to come first

Intelligence lies in the interplay of many specialized modules

In order to interact in the long term and trust each other’s
productions, these modules need to exchange “reasons” for

their results

Reasons come after the fact.

They are most of the time post hoc reconstructions
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Central question

* How do we reconstruct reasons after the fact such that
— They provide justifications for the conclusions reached

— And are as exact and informative as possible
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