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What	is	reasoning	(1)	
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Reasoning	

1.  Manipulate	representations		

2.  To	solve	a	problem	
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Many	types	of	representations	and	of	operations	

•  Experiments	of	Shepard	
http://www.ulb.ac.be/psycho/fr/docs/museum/Experiments/Shepard/Shepard.html
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Many	types	of	representations	and	of	operations	
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1.  On	a	boat,	suppose	that	two	measurements	of	distance	are	
made	three	minutes	apart,	and	that	1500	yards	have	been	
covered	

2.  A	nautical	mile	=	2000	yards	

				What	is	the	speed	of	the	boat	in	knots	(nautical	miles	/	hour)?	
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•  Solution 1 
    

              (prior K on algebra)

–  d = 1500 yards = 1500/2000 mille

–  t = 3mn = 3/60 hour

➥  v = 0.75 / 0.05 = 15 miles/h

Rks :
•   Operations can be carried out in different orders
•  They must be organized

d  =  v ×  t   ⇒   v =  d
t
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•  Solution 2

–  Same but without external memory in order to store the intermediate 
results

–  The difficulty lies in ordering the operations
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•  Solution	3	
–  Use	of	a	nautical	rule	

–  Draw	a	line	between	the	time	and	the	distance	to	get	the	speed	

–  The	representation	allows	one	to	get	the	result	easily		

–  But	it	is	highly	specialized	
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•  Solution	4:	the	3mn	rule	

–  3	mn	=	1/20	hour	

–  100	yards	=	1/20	mile	

–  You	just	have	to	remove	the	2	last	digits	of	the	distance	(e.g.	1500	yards)	
to	get	the	speed	->	15	knots	

–  But	the	measurements	have	to	be	made	three	minutes	apart	



15	/	111	

Lesson	

•  A	reasoning	system	

–  Must	chose	an	appropriate	representation	

–  And	select	and	organize	the	right	operations	
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Blending	effect			[Fauconnier	&	Turner]	

The	Riddle	of	the	Buddhist	Monk:		

•  A	 Buddhist	 monk	 begins	 at	 dawn	 one	 day	 walking	 up	 a	

mountain,	 reaches	 the	 top	 at	 sunset,	 meditates	 at	 the	 top	

overnight	until,	at	dawn,	he	begins	 to	walk	back	 to	 the	 foot	of	

the	mountain,	which	he	reaches	at	sunset.		

•  Make	no	assumptions	about	his	starting	or	stopping	or	about	his	

pace	during	the	trips.		

•  Riddle:	is	there	a	place	on	the	path	that	the	monk	occupies	

													at	the	same	hour	of	the	day	on	the	two	trips?	
16	
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Reasoning	

…	
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Reasoning	

•  Entails	
–  Inferencing	information	that	is	not	explicitly	given	in	the	initial	

representation	

–  			Jack	is	married	either	to	Francesca	or	to	Sophie	

	Sophie	is	not	married	

												⇒  Jack	is	married	to	Francesca	

–  			John	looks	at	Isabel	and	Isabel	looks	at	Kevin	

	John	is	married,	and	Kevin	is	not	married	

												⇒  A	married	person	looks	at	a	non	married	person	
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Many	forms	of	reasoning	

•  Deduction	

•  Induction	

•  Abduction	

•  Analogy	

•  Blending	

•  Probabilistic	reasoning	

•  …	

With	rules	that	define	
legitimate	operations	

	
Provide	some	guarantees	

on	the	results	
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Propositional logics: inference rules

•  Modus ponens

•  AND-elimination

•  AND-introduction

•  OR-introduction

•  Elimination double negation

•  Unitary Resolution

•  Resolution

α => β,     α
β

α1 ∧  α2 ∧ … ∧ αn
αι

α1, α2, … ,αn
α1 ∧ α2 ∧ … ∧ αn

αι 
α1 v  α2 v … v αn

¬¬α
α

α v β,     ¬β
α

α v β,     ¬β v γ
α v γ
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Reasoning	

1.  Manipulate	representations		

2. To	solve	a	problem	
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Prodigy	

•  Steve	Minton		

4 a.arora, h.fiorino, d.pellier, m.metivier and s.pesty

UNSTACK ( blockD , blockC ) , ( ho ld ing ( blockD ) , not ( armempty ) , c l e a r (
blockC ) ) , PUTDOWN ( blockD )

Whilst good in theory, the creation of models in the case of complex domains is a non
trivial task. While it is possible to codify, debug and maintain action models pertaining to
simple toy domains, it remains laborious, unfeasible and sometimes impractical to do so for
some complex real-world domains. The amount of e↵ort needed to encode and maintain accurate
action blueprints is significant. There is also no “one size fits all” strategy. Thus, we seek help
from various ML techniques which allow learning of the underlying action model from traces
produced as a result of plan execution. This model can ideally be re-injected into the planner for
further planning purposes. The ML techniques to learn from these traces broadly fall into one of
the following categories:

• Online: Learning occurs during the execution phase (Zimmermann & Kambhampati (2003)).
The system can start learning as soon as the generation phase is complete. This kind of
learning never stops, thus allowing the continuous correction and improvement of an incorrect
model and adaptation to changing environment characteristics. On the flip side, the cost of
learning is added to the cost of planning, augmenting the time window in which execution
occurs.

• O✏ine: One-shot learning exercise from traces. It allows a decoupling of the learning and
planning phases, ensuring that the cost of learning is not added to that of planning. However,
this one-time learning also means that in case of the injection of an ill defined domain, the
planner may never be able to recover before the end of the planning and the beginning of the
learning phase, thus staying blocked. O✏ine learning is the more popular learning mechanism.

Given the aforementioned information, our learning problem can be formulated as follows:
given a set of plan traces T, to learn a domain model m encompassing all the domain-applicable
actions which best explains the observed plan traces (see figure 1).

Figure 1: Formulation and Representation

We explain the aforementioned definitions in the form of a concrete example. A sample problem
in the Blocksworld domain with its solution sequence is represented in the figures 2 and 3.

AP problems and domains are typically represented in a standard language called the Planning
Domain Definition Language (PDDL). It has been the o�cial language for the representation of
the problems and solutions in all of the International Planning Competitions (IPC) which have
been held from the year 1998 onwards.

From	[Ankuj	Arora	et	al.		(2019).	“A	review	of	learning	planning	action	models”	
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E.g.	The	PRODIGY	system	

ACM	SIGART	Bulletin,	1991,	vol.	2,	no	4,	p.	51-55	
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ABSTRACT 

Artificial intelligence has progressed to the point where mul- 
tiple cognitive capabilities are being integrated into compu- 
tational architectures, such as SOAR, PRODIGY~ THEO, and 
ICARUS. This paper reports on the PRODIGY architecture, 
describing its planning and problem solving capabilities and 
touching upon its multiple learning methods. Learning in 
PRODIGY Occurs at all decision points and integration in 
PRODIGY is at the knowledge level; the learning and reason- 
ing modules produce mutually interpretable knowledge struc- 
tures. Issues in architectural design are discussed, providing 
a context to examine the underlying tenets of the PRODIGY 
architecture. 

1 I n t r o d u c t i o n  

A common dream for many AI researches, present authors 
included, is the construction of a general purpose learning 
and reasoning system that given basic axiomatic knowledge 
of a domain is capable of becoming an expert problem solver. 

Our machine learning approach, implemented in PRODIGY [2], 
starts with a general problem-solving engine based on a possi- 
bly incomplete domain theory. The problem solver improves 
its performance through experience by refining the initial do- 
main knowledge and learning knowledge to control the search 
process. The paper is divided into two parts. The first part 
describes the basic architecture, including the problem solver 
and the various learning modules. The second part discusses 
the design issues in building an integrated architecture. 

2 T h e  PRODIGY A r c h i t e c t u r e  

2.1 T h e  P r o b l e m  S o l v e r  

PRODIGY'$ basic reasoning engine is a general-purpose prob- 
lem solver and planner [10] that searches for sequences of op- 
erators (i.e., plans) to accomplish a set of goals from a spec- 
ified initial state description. Search in PRODIGY is guided 
by a set of control rules that apply at each decision point. 
Search control rules may be general or domain specific, hand- 
coded or automatically acquired, and may consist of heuris- 
tic preferences or definitive selections. In the absence of any 
search control, PRODIGY defaults to depth-first means-ends 
analysis. But, with appropriate search control knowledge it 
can emulate other search disciplines, including breath-first 
search, depth-first iterative-deepening, best-first search, and 
knowledge-based plan instantiation. 

2 .2  K n o w l e d g e  R e p r e s e n t a t i o n  

Each operator has a precondition expression that must be sat- 
isfied before the operator can be applied, and a list of effects 
that describe how the application of the operator changes the 
world. Precondition expressions are well-formed formulas in 
a form of predicate logic encompassing negation, conjunction, 

disjunction, and existential and universal quantification. The 
effects are atomic formulas that describe the facts that are 
added or deleted from the current state when the operator 
is applied. Operators may also contain conditional effects, 
which represent changes to the world that are dependent on 
the state in which the operator is applied. 

2.3 P r o b l e m  D e f i n i t i o n  a n d  P r o b l e m  S o l v i n g  

A problem consists of an initial state and a goal expression. 
To solve a problem, PRODIGY must find a sequence of opera- 
tors that, if applied to the initial state, produces a final state 
satisfying the goal expression. The search tree initially starts 
out as a single node containing the initial state and goal ex- 
pression. The tree is expanded by repeating the following 
two steps: 

1. Dec i s ion  phase :  There are four types of decisions 
that PRODIGY makes during problem solving. First, it 
must decide what node in the search tree to expand 
next, defaulting to a depth-first expansion. Each node 
consists of a set of goals and a state describing the 
world. After a node has been selected, one of the node's 
goals must be selected, and then an operator relevant 
to this goal must be chosen. Finally, a set of bindings 
for the parameters of that operator must be decided 
upon. 

2. E x p a n s i o n  phase :  If the instantiated operator's pre- 
conditions are satisfied, the operator is applied. Oth- 
erwise, PRODIGY subgoals on the unmatched precondi- 
tions. In either case, a new node is created with up- 
dated information about the state or the subgoals. 

The search terminates after creating a node whose state sat- 
isfies the top-level goal expression. 

2 .4  C o n t r o l  R u l e s  

As PRODIGY attempts to solve a problem, it must make de- 
cisions about which node to expand, which goal to work on, 
which operator to apply, and which objects to use. These 
decisions can be influenced by control rules to increase the 
efficiency of the problem solver's search and to improve the 
quality of the solutions that are found. 

PRODIGY's reliance on explicit control rules, which can be 
learned for specific domains, distinguishes it from most do- 
main independent problem solvers. Instead of using a least- 
commitment search strategy, for example, PRODIGY expects 
that any important decisions will be guided by the presence 
of appropriate control knowledge. If no control rules are rel- 
evant to a decision, then PRODIGY makes a quick, arbitrary 
choice. If in fact the wrong choice is made, and costly back- 
tracking proves necessary, an attempt will be made to learn 
the control knowledge that must be missing. The rationale 
for PRODIGY's casual commi tment  strategy is that for any 
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Résolution
de problèmes Généralisation

Critique

Génération
de problèmes

Calculer la primitive de :
∫ 3x cos(x) dx

∫ 3x cos(x) dx

3x sin(x) - ∫ 3x sin(x) dx

3x sin(x) - 3 ∫ x sin(x) dx

3x sin(x) - 3x cos(x) dx + C

OP2 avec :
u = 3x
dv = cos(x) dx

OP1

OP5

Un des exemples positifs proposés :

 ∫ 3x cos(x) dx
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Learning	from	a	single	example	

1.  	A	single	example	

2.  	Search	for	a	proof	of	a	«	fork	»	

3.  	Generalization	

Explanation-Based	Learning	
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Explanation-Based	Learning	

Ex	:	learn	the	concept			stackable(Object1, Object2)

•  Domain	theory	:	
(T1) : weight(X, W) :- volume(X, V), density(X, D), W is V*D.

(T2) : weight(X, 50) :- is_a(X, table).

(T3) : lighter_than(X, Y) :- weight(X, W1), weight(X, W2), W1 < W2.

•  Operationality	constraint:	

•  Concept	should	be	expressible	using		volume,	density,	color,	…	

•  Positive	example	(solution)	:	
on(obj1, obj2). volume(object1, 1).

is_a(object1, box). volume(object2, 0.1).

  is_a(object2, table). owner(object1, frederic).

color(object1, red). density(object1, 0.3).

color(object2, blue). Made_of(object1, cardboard).

made_of(object2, wood). owner(object2, marc).	
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Explanation-Based	Learning	

Generalized	search	tree	resulting	from	regression	of	the	target	concept	in	the	proof	tree		
by	computing	at	each	step	the	most	general	literals	allowing	this	step.	
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Explanation-Based	Learning	

•  Induction	from	a	single	example	

–  …	and	a	strong	domain	theory	

•  Language	of	logics	

•  Operators	for	reasoning	(deduction,	…)	

	Now	used	in	«	solvers	»	of	SAT	problems	
													And	accelerate	them	immensely		

	because	the	“data”	is	clean	
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Lesson	(1-1)	

•  Reasoning	can	be	used	in	order	to	learn	

–  To	recognize	concept	

•  By	abstracting	the	conditions	of	membership	

–  To	accelerate	problem-solving		

•  By	compiling	search	procedures	
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Lesson	(1-2)	

•  Reasoning	can	be	used	in	order	to	learn	

•  Which	does	not	mean	that	the	results	

–  Prediction	

–  Learned	hypothesis	

											Should	be	automatically	readily	interpretable		

More	on	this	later		
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Outline	

1.  	What	is	reasoning	(1)	

2.  	Machine	Learning	nowadays:	a	path	to	fast	thinking	

3.  	The	future	of	Machine	Learning:	what	is	reasoning	(2)	

4.  	Conclusion	
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Machine	Learning	nowadays	

A	path	to	fast	thinking	
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Thinking:	fast	and	slow	

•  Daniel	Kahneman	
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Thinking:	fast	and	slow	

•  Type	1	process:	Fast	

–  Fast	

–  Effortless	

–  Parallel	

–  Unconscious	

–  Automatic	

–  Associative	

–  Contextualized	

–  Heuristic	

–  Intuitive	

–  Implicit	

–  Nonverbal	

–  Independent	of	general	intelligence	

–  Independent	of	working	memory	

–  Shared	with	non	human	animals	

•  Type	2	process:	Slow	

–  Slow	

–  Effortful	

–  Serial	

–  Conscious	

–  Controlled	

–  Rule-Based	

–  Decontextualized	

–  Analytic	

–  Reflective	

–  Explicit	

–  Linked	to	language	

–  Linked	to	general	intelligence	

–  Involving	working	memory	

–  Specifically	human	
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Machine	Learning	as	…	

…		Learning	a	function	from	an	input	space	X	to	an	output	space	Y		

Cats	vs.	dogs	
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Supervised	learning	

Given	a	training	set	

•  Find	an	hypothesis																		such	that	

•  Hoping	that	it	generalizes	well	:				

Sm =
�
(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xm, ym)

 
f	

h	

h(xi) ⇡ yi

8x 2 X : h(x) ⇡ y

h 2 H
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•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

•  They	belong	either	to	class	‘+’	or	to	class	‘-’	

One	example	that	tells	a	lot	…		
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Description Your prediction True class

				1	large	red	square	   -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

•  They	belong	either	to	class	‘+’	or	to	class	‘-’	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		
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Description Your prediction True class

				1	large	red	square	   -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		

How	many	possible	functions	altogether	from	X	to	Y	?	

How	many	functions	do	remain	after	6	training	examples?	

22			=		216		=		65,536	4	

210		=		1024	
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•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

One	example	that	tells	a	lot	…		

Description	 Your	prediction	 True	class	
1	large	red	square	 	 -	
1	large	green	square	 	 +	
2	small	red	squares	 	 +	
2	large	red	circles	 	 -	
1	large	green	circle	 	 +	
1	small	red	circle	 	 +	
1	small	green	square	 	 -	
1	small	red	square	 	 +	
2	large	green	squares	 	 +	
2	small	green	squares	 	 +	
2	small	red	circles	 	 +	
1	small	green	circle	 	 -	
2	large	green	circles	 	 -	
2	small	green	circles	 	 +	
1	large	red	circle	 	 -	
2	large	red	squares	 ?	 	

	

How	many	
remaining	
functions?	

15	

?	
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•  How	to	chose	an	hypothesis?	
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A	statistical	theory	of	induction	

	What	performance	do	we	aim	at?	

•  	Cost	of	a	prediction	error	
–  The	loss	function	

•  	What	is	the	expected	cost	if	I	choose	h?	

–  Expected	cost:	the	“true	risk”		

R(h) =
�

X�Y
�
�
h(x), y

�
pXY(x, y) dx dy

�
�
h(x), y

�
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A	statistical	theory	of	induction	

•  	The	empirical	performance	of	h		

–  E.g.	No	prediction	error	on	the	training	sample	S		

x

y

h

The	“empirical	risk”	

R̂(h) =
1
m

m�

i=1

�
�
h(xi), yi

�
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Statistical	study	for	|H|	hypotheses	

It	leads	to:	

The	Empirical	Risk	Minimization	principle	

is	sound	only	if	there	exists	a	limit	(a	bias)	on	the	expressivity	of	H		

8h 2 H, 8�  1 : Pm

"
R(h)  bR(h) +

log |H|+ log 1
�

m

#
> 1� �
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Learning	–	completing	data	with	necessary	a	aprioris	
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HOW	TO	…	devise	learning	algorithms	

1.  Define	an	appropriate	regularized	(inductive)	criterion	

1.  Translate	the	cost	of	errors	of	prediction	in	the	domain	into	a	loss	function	

2.  Define	a	regularization	term	that	expresses	
	assumptions	about	the	underlying	regularities	of	the	world	

3.  If	possible,	make	the	resulting	optimization	problem	a	convex	one	

2.  Use	or	develop	an	efficient	optimization	solver	

hopt = ArgMin
h2H


1

m

mX

i=1

l(h
�
xi), yi

�

| {z }
empirical risk

+ � reg(H)| {z }
bias on the world

�
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Learning	sparse	linear	approximator	

•  The	hypothesis	is	of	the	form	

•  A	priori	assumption:	few	non	zero	coefficients	

w�
ridge = Argmin

w

� m�

i=1

�
yi �wxi

�2 + � ||w||22
�

w�
lasso = Argmin

w

� m�

i=1

�
yi �wxi

�2 + � ||w||1
�

Ridge	regression	

Lasso	regression	

h(x) = w · x
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Regularized	
empirical	risk	

Surrogate	
expression	of	
the	regularized	
empirical	risk	

Optimization	
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A	lot	of	“Lamppost	theorems”	

Theorems	that	guarantee	that:	

–  If	the	world	obeys	my	a	priori	assumptions	

–  Then	the	learning	algorithm	will	end	up	with	a	
good	hypothesis	(closed	to	the	“real”	one)	

–  Otherwise	learning	can	lead	to	very	bad	
hypotheses	
(e.g.		If	the	world	is	not	sparse)	

52	
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Interpreting	–	completion	of	percepts	
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Induction	and	its	illusions	
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Induction	and	illusions	

Crater		or		hill?	
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Lesson	(2-1)	

•  In	the	current	ML	methods,	prior	knowledge	takes	the	form	of	
imposed	bias	on	the	type	of	regularities	that	can	be	captured	

•  No	reasoning	takes	place	during	learning	

–  Just	an	exploration	of	the	hypothesis	space		

–  Subject	to	an	optimization	criterion	
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•  Of	course	there	are	biases	in	the	current	machine	learning	
algorithms	and	techniques	

•  But	it	seems	that	in	the	new	paradigm	there	is	no	place	nor	need	
for	reasoning	
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•  Maybe	we	don’t	yet	understand	the	biases	that	are	entailed	in		
deep	Neural	Networks	

See	C.	Zhang,	S.	Bengio,	M.	Hardt,	B.	Recht,	O.	Vinyals	(ICLR,	May	2017).		
“Understanding	deep	learning	requires	rethinking	generalization”	

																	But		what	does	it	have	to	do	with	reasoning?		
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A	car	in	a	swimming	pool	

				…	or	no	car	...	?		
Concepts$≠$Statistics
Computer#vision#is#not#a#statistical#problem

Car#examples#in#ImageNet
Is#this#less#of#a#car

because#the#context#is#wrong?

[Léon	Bottou	(ICML-2015,	invited	talk)	«	Two	big	challenges	in	Machine	Learning	»]	
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Adversarial	learning	

Central	question:	which	guarantees	?	

60	
[Selvaraju	et	al.	(2017)	«	Grad-CAM:	Visual	explanations	from	deep	networks	via	gradient-based	localization	»]	

!!??	

ambiguities inherent in ImageNet classification. We can also
see that seemingly unreasonable predictions have reasonable

explanations, an observation also made in HOGgles [48].
6.2. Effect of adversarial noise on VGG-16

Goodfellow et al. [17] demonstrated the vulnerability of
current deep networks to adversarial examples, which are
slight imperceptible perturbations of input images which
fool the network into misclassifying them with high confi-
dence. We generate adversarial images for the ImageNet
trained VGG-16 model such that it assigns a high probability
(>0.9999) to a category that is absent in the image and a
very low probability to categories that are present. We then
compute Grad-CAM visualizations for the categories that are
present. We can see from Fig. 5 that inspite of the network
being completely certain about the absence of these cate-
gories (tiger cat and boxer), Grad-CAM visualizations can
correctly localize the categories. This shows the robustness
of Grad-CAM to adversarial noise.

Boxer: 0.40 Tiger Cat: 0.18

(a) Original image
Airliner: 0.9999

(b) Adversarial image
Boxer: 1.1e-20

(c) Grad-CAM “Dog”

Tiger Cat: 6.5e-17

(d) Grad-CAM “Cat”

Figure 5: (a-b) Original image and the generated adversarial image for category “air-
liner”. (c-d) Grad-CAM visualizations for the original categories “tiger cat” and
“boxer (dog)” along with their confidence. Inspite of the network being completely
fooled into thinking that the image belongs to “airliner” category with high confi-
dence (>0.9999), Grad-CAM can localize the original categories accurately.

6.3. Identifying bias in dataset
In this section we demonstrate another use of Grad-CAM:

identifying and thus reducing bias in training datasets. Mod-
els trained on biased datasets may not generalize to real-
world scenarios, or worse, may perpetuate biases and stereo-
types (w.r.t. gender, race, age, etc.) [6, 37]. We finetune an
ImageNet trained VGG-16 model for the task of classify-
ing “doctor” vs. “nurse”. We built our training dataset using
the top 250 relevant images (for each class) from a popular
image search engine. The trained model achieves good ac-
curacy on validation images from the search engine. But at
test time the model did not generalize as well (82%).

Grad-CAM visualizations of the model predictions re-
vealed that the model had learned to look at the person’s face
/ hairstyle to distinguish nurses from doctors, thus learning
a gender stereotype. Indeed, the model was misclassifying
several female doctors to be a nurse and male nurses to be
a doctor. Clearly, this is problematic. Turns out the im-
age search results were gender-biased (78% of images for
doctors were men, and 93% images for nurses were women).

Through this intuition gained from our visualization, we
reduced the bias from the training set by adding in male
nurses and female doctors to the training set, while main-
taining the same number of images per class as before. The

re-trained model now generalizes better to a more balanced
test set (90%). Additional analysis along with Grad-CAM
visualizations from both models can be found in the supple-
mentary. This experiment demonstrates that Grad-CAM can
help detect and remove biases in datasets, which is impor-
tant not just for generalization, but also for fair and ethical
outcomes as more algorithmic decisions are made in society.

7. Counterfactual Explanations
We propose a new explanation modality - Counterfactual

explanations. Using a slight modification to Grad-CAM we
obtain these counterfactual explanations, which highlight the
support for the regions that would make the network change
its decision. Removing concepts occurring in those regions
would make the model more confident about the given target
decision.

Specifically, we negate the gradient of yc (score for class
c) with respect to feature maps A of a convolutional layer.
Thus the importance weights ↵c

k
, now become,

↵c

k
=

global average poolingz }| {
1

Z

X

i

X

j

� @yc

@Ak

ij

| {z }
Negative gradients

(5)

As in (2), we weighted sum the forward activation maps, A
with weights ↵c

k
, and follow it by a ReLU to obtain counter-

factual explanations as shown in Fig. 6.

(a) Original Image (b) Cat Counterfactual exp (c) Dog Counterfactual exp
Figure 6: Negative Explanations with Grad-CAM

8. Image Captioning and VQA
Finally, we apply our Grad-CAM technique to the im-

age captioning [7, 23, 47] and Visual Question Answering
(VQA) [3, 15, 36, 41] tasks. We find that Grad-CAM leads to
interpretable visual explanations for these tasks as compared
to baseline visualizations which do not change noticeably
across different predictions. Note that existing visualization
techniques are either not class-discriminative (Guided Back-
propagation, Deconvolution), or simply cannot be used for
these tasks or architectures, or both (CAM or c-MWP).
8.1. Image Captioning

In this section, we visualize spatial support for an image
captioning model using Grad-CAM. We build on top of the
publicly available ‘neuraltalk2’4 implementation [25] that
uses a finetuned VGG-16 CNN for images and an LSTM-
based language model. Note that this model does not have

4https://github.com/karpathy/neuraltalk2
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The	case	of	AlphaGo	

•  Plays	like	an	“alien”	

•  Stunning	moves	

•  A	revolution	for	go	playing	

•  Effervescence	in	the	go	playing	circles	
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The	case	of	AlphaGo:	to	understand	its	plays	

Fan	Hui,	Gu	Li,	Zhou	Ruyang	(very	strong	players	at	go)	are	converting	themselves	

in	the	analysis	of	the	games	played	by	AlphaGo	

•  Kind	of	exegesis.	Explanations	a	posteriori	

•  Necessary	for	

–  Communication	

–  Teaching	

And	even	AlphaGo	can	make	mistakes	
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Lesson	(2-2)	

•  For	various	reasons,	sometimes,	there	are	needs	for:	

–  Justification	of	the	result	

–  Transparency	of	the	learned	hypothesis	
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Outline	

1.  	What	is	reasoning	(1)	

2.  	Machine	Learning	nowadays:	a	path	to	fast	thinking	

3.  	The	future	of	Machine	Learning:	what	is	reasoning	(2)	

4.  	Conclusion	
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The	future	of	Machine	Learning	

What	is	reasoning	(2)	
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Reasoning	…	

		…	comes	after	the	fact	

•  Most	of	our	inferences	result	from	specialized	modules	with	little	
access	to	their	functioning		

–  Perception	

–  Memory	access	(and	reconstruction)	

–  Interpreting	other’s	states	of	mind	

We	use	reasons	to	justify	ourselves	and	convince	others	
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Finding	reasons	

•  Try	to	identify	bits	of	information	that	did	play	a	role		

in	our	beliefs	and	decisions	
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The	“bystander	effect”	

•  People	were	told	that	they	would	participate	in	a	market	study	
on	games.	Participants	were	individually	welcomed	at	the	door	
of	the	lab	by	a	friendly	assistant	who	took	them	to	a	room	

connected	to	her	office,	gave	them	a	questionnaire	to	fill	out,	
and	went	back	to	her	office,	where	she	could	be	heard	shuffling	

papers,	opening	drawers,	and	so	on.		
A	while	later,	the	participants	heard	her	climb	on	a	chair	and	

then	heard	a	loud	crash	and	a	scream,	“Oh,	my	God,	my	foot	…	
I	...	can’t	move	it.	Oh	...	my	ankle!	...	I	can’t	get	this	...	thing	...	of	
me.”	
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The	“bystander	effect”	

•  In	one	condition,	the	participant	was	alone	in	the	room		
when	all	this	happened.	

•  In	another	condition,	there	was	a	man	in	the	room	who	acted	as	
if	he	were	a	participant	too.		
This	man	hardly	reacted	to	the	crash	and	the	scream.		
He	just	shrugged	and	went	on	filling	out	the	questionnaire.		
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The	“bystander	effect”	

What	do	you	expect	?	
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The	“bystander	effect”	

What	do	you	expect	?	

•  In	the	first	condition,	70%	of	the	participants	intervened	to	help.	

•  In	the	second	condition,	only	7%	did	
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The	“bystander	effect”	

After	all	this	the	participants	were	interviewed	about	their	reactions.		

•  First	condition,	typically:	“I	wasn’t	quite	sure	what	had	happened;		
I	thought	I	should	at	least	find	out.”	

•  Second	condition,	typically	the	participants	thought	that	whatever	had	
happened	was	not	too	serious	

					Not	one	ever	mentioned	the	presence	of	the	other	participant!!	

					And	even	more,	they	claimed	this	presence	had	no	influence	at	all		
					on	their	decision	
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Lesson	

•  The	reasons	invoked	come	after	the	fact	of	deciding	

•  Indeed	they	are	blatantly	faulty	

•  Reasons	are	justifications	
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•  If	I	base	my	“intuitions”	on	good	reasons	

–  Other	actors	will	increase	their	trust	in	my	claims	

•  Reasons	
1.  Premises	or	important	influencing	factors	for	the	final	decision	

2.  The	reasoning	that	uses	them.	Others	should	be	able	to	duplicate	it	

–  Both	together	should	lead	to	the	same	final	decision	deemed	to	be	
explained	
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A	new	perspective	

•  Reasoning	can	be	used	to	solve	problems	and	then	be	the	basis	
of	learning	in	order	to	gain	efficiency:	compilation	of	knowledge	

•  But	it	is	not	required	to	learn	

•  Reasoning	is	required	when		

–  sub-systems	are	interacting	in	a	repeated	manner	

–  Or	there	are	interactions	with	humans	
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An	accident	of	an	(autonomous)	car	

On	May	7th,	2016,	a	Tesla	car	in	autopilot	mode	collided	with	a	semi-
trailer	across	the	road	

•  The	analysis	reveals	that:	
–  The	radar	did	detect	the	semi-trailer	but	there	were	numerous	road	signs	

on	the	road	with	a	radar	"signature”	similar	to	one	of	a	car	

–  The	camera	was	unsure	of	its	detections	due	to	a	dazzling	milky	sky	(the	
semi-trailer	was	white).	
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Combination	of	adaptive	sub-systems	and	justifications	

•  The	analysis	reveals	that:	

–  The	radar	did	detect	a	semi-trailer	but	…	

–  The	camera	was	not	sure	of	its	detection	of	a	semi-trailer	because	…	

•  What	if	the	radar	had	said:	“Even	though	I	am	not	quite	sure,	I	do	not	believe	it	to	be	a	
semi-trailer	because	it	looks	to	me	like	a	road	sign	of	which	I	have	detected	many	on	
this	road.”	

•  What	if	the	camera	had	said:	“Even	though	I	am	not	quite	sure,	I	do	not	believe	it	to	
be	a	semi-trailer	because	the	color	is	close	to	the	color	of	the	sky	which	is	milky	
today.”	

•  What	if	the	radar	and	camera	had	a	long	history	of	such	exchanges	and	were	
influencing	each	other	…	



Interactions	between	learning	modules	

•  Two	sub-systems		

–  One	placing	advertising	links	

–  The	other	one	choosing	the	adds	

•  Mutually	influencing	each	other	

–  Each	one	is	based	on	click	data		

–  Which	also	depends	on	the	intervention	of	the	other	system		

–  And	other	uncontrolled	factors	(price,	user	requests,	…)	
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BOTTOU, PETERS, ET AL.
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Figure 1: Mainline and sidebar ads on a search result page. Ads placed in the mainline are more
likely to be noticed, increasing both the chances of a click if the ad is relevant and the risk
of annoying the user if the ad is not relevant.

• Let x represent the auction context information, such as the user query, the user profile, the
date, the time, etc. The ad placement engine first determines all eligible ads a1 . . .an and the
corresponding bids b1 . . .bn on the basis of the auction context x and of the matching criteria
specified by the advertisers.

• For each selected ad ai and each potential position p on the web page, a statistical model
outputs the estimate qi,p(x) of the probability that ad ai displayed in position p receives a user
click. The rank-score ri,p(x) = biqi,p(x) then represents the purported value associated with
placing ad ai at position p.

• Let L represent a possible ad layout, that is, a set of positions that can simultaneously be
populated with ads, and let L be the set of possible ad layouts, including of course the empty
layout. The optimal layout and the corresponding ads are obtained by maximizing the total
rank-score

max
L2L

max
i1,i2,...

Â
p2L

rip,p(x) , (1)

subject to reserve constraints

8p 2 L, rip,p(x)� Rp(x) ,

and also subject to diverse policy constraints, such as, for instance, preventing the simultane-
ous display of multiple ads belonging to the same advertiser. Under mild assumptions, this
discrete maximization problem is amenable to computationally efficient greedy algorithms
(see appendix A.)

• The advertiser payment associated with a user click is computed using the generalized second
price (GSP) rule: the advertiser pays the smallest bid that it could have entered without chang-
ing the solution of the discrete maximization problem, all other bids remaining equal. In other
words, the advertiser could not have manipulated its bid and obtained the same treatment for
a better price.

3210

[L.	Bottou	et	al.	«Counterfactual	Reasoning	and	Learning	Systems:	The	
Example	of	Computational	Advertising	»,	JMLR,	14,	(2013),	3207-3260]		
		

Adaptive	advertising	placement	system		
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Data Algorithm
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Knowledge	as	input	to	ML	

•  Convolutional	Neural	Networks	
–  Knowledge	embedded	in	the	architecture	of	the	network	

From	https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53		
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Knowledge	as	input	to	ML	

•  Convolutional	Neural	Networks	
–  Knowledge	embedded	in	the	architecture	of	the	network	

•  How	to	obtain	an	explanation	
–  About	the	procedure?	

–  About	the	premises?	

Forget	it!	It	is	opaque	
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What	kind	of	“reasons”	can	we	extract?	

•  The	hypothesis	returned:	a	decision	function	
–  Recommending	a	movie	

–  Recommending	a	life	partner	

–  Written	character	recognition	

–  Recognize	traffic	signs	

–  Decide	the	value	of	a	position	in	go	

–  Predict	the	risk	of	crime	occurrence		

–  Decide	if	someone	should	get	a	loan	

–  Decide	to	hire	or	not	someone	
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The	case	of	deep	NNs	

•  Various	approaches	to	“explain”	the	decision-making	of		
pre-trained	models	

1.   Feature-based	explanations	methods	
•  Attribute	the	decision	to	important	features	in	the	input	space	

2.   Sample-based	explanation	methods	

•  Attribute	the	decision	to	previously	observed	samples		

3.   Concept-based	explanation	methods	

•  estimates	the	importance	of	a	concept	(intermediate	category	/		
intermediate	layers)	to	a	given	class	
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The	case	of	deep	NNs	

1.   Feature-based	explanations	methods	
•  Attribute	the	decision	to	important	features	in	the	input	space	

ambiguities inherent in ImageNet classification. We can also
see that seemingly unreasonable predictions have reasonable

explanations, an observation also made in HOGgles [48].
6.2. Effect of adversarial noise on VGG-16

Goodfellow et al. [17] demonstrated the vulnerability of
current deep networks to adversarial examples, which are
slight imperceptible perturbations of input images which
fool the network into misclassifying them with high confi-
dence. We generate adversarial images for the ImageNet
trained VGG-16 model such that it assigns a high probability
(>0.9999) to a category that is absent in the image and a
very low probability to categories that are present. We then
compute Grad-CAM visualizations for the categories that are
present. We can see from Fig. 5 that inspite of the network
being completely certain about the absence of these cate-
gories (tiger cat and boxer), Grad-CAM visualizations can
correctly localize the categories. This shows the robustness
of Grad-CAM to adversarial noise.

Boxer: 0.40 Tiger Cat: 0.18

(a) Original image
Airliner: 0.9999

(b) Adversarial image
Boxer: 1.1e-20

(c) Grad-CAM “Dog”

Tiger Cat: 6.5e-17

(d) Grad-CAM “Cat”

Figure 5: (a-b) Original image and the generated adversarial image for category “air-
liner”. (c-d) Grad-CAM visualizations for the original categories “tiger cat” and
“boxer (dog)” along with their confidence. Inspite of the network being completely
fooled into thinking that the image belongs to “airliner” category with high confi-
dence (>0.9999), Grad-CAM can localize the original categories accurately.

6.3. Identifying bias in dataset
In this section we demonstrate another use of Grad-CAM:

identifying and thus reducing bias in training datasets. Mod-
els trained on biased datasets may not generalize to real-
world scenarios, or worse, may perpetuate biases and stereo-
types (w.r.t. gender, race, age, etc.) [6, 37]. We finetune an
ImageNet trained VGG-16 model for the task of classify-
ing “doctor” vs. “nurse”. We built our training dataset using
the top 250 relevant images (for each class) from a popular
image search engine. The trained model achieves good ac-
curacy on validation images from the search engine. But at
test time the model did not generalize as well (82%).

Grad-CAM visualizations of the model predictions re-
vealed that the model had learned to look at the person’s face
/ hairstyle to distinguish nurses from doctors, thus learning
a gender stereotype. Indeed, the model was misclassifying
several female doctors to be a nurse and male nurses to be
a doctor. Clearly, this is problematic. Turns out the im-
age search results were gender-biased (78% of images for
doctors were men, and 93% images for nurses were women).

Through this intuition gained from our visualization, we
reduced the bias from the training set by adding in male
nurses and female doctors to the training set, while main-
taining the same number of images per class as before. The

re-trained model now generalizes better to a more balanced
test set (90%). Additional analysis along with Grad-CAM
visualizations from both models can be found in the supple-
mentary. This experiment demonstrates that Grad-CAM can
help detect and remove biases in datasets, which is impor-
tant not just for generalization, but also for fair and ethical
outcomes as more algorithmic decisions are made in society.

7. Counterfactual Explanations
We propose a new explanation modality - Counterfactual

explanations. Using a slight modification to Grad-CAM we
obtain these counterfactual explanations, which highlight the
support for the regions that would make the network change
its decision. Removing concepts occurring in those regions
would make the model more confident about the given target
decision.

Specifically, we negate the gradient of yc (score for class
c) with respect to feature maps A of a convolutional layer.
Thus the importance weights ↵c

k
, now become,

↵c

k
=

global average poolingz }| {
1

Z

X

i

X

j

� @yc

@Ak

ij

| {z }
Negative gradients

(5)

As in (2), we weighted sum the forward activation maps, A
with weights ↵c

k
, and follow it by a ReLU to obtain counter-

factual explanations as shown in Fig. 6.

(a) Original Image (b) Cat Counterfactual exp (c) Dog Counterfactual exp
Figure 6: Negative Explanations with Grad-CAM

8. Image Captioning and VQA
Finally, we apply our Grad-CAM technique to the im-

age captioning [7, 23, 47] and Visual Question Answering
(VQA) [3, 15, 36, 41] tasks. We find that Grad-CAM leads to
interpretable visual explanations for these tasks as compared
to baseline visualizations which do not change noticeably
across different predictions. Note that existing visualization
techniques are either not class-discriminative (Guided Back-
propagation, Deconvolution), or simply cannot be used for
these tasks or architectures, or both (CAM or c-MWP).
8.1. Image Captioning

In this section, we visualize spatial support for an image
captioning model using Grad-CAM. We build on top of the
publicly available ‘neuraltalk2’4 implementation [25] that
uses a finetuned VGG-16 CNN for images and an LSTM-
based language model. Note that this model does not have

4https://github.com/karpathy/neuraltalk2

!!??	
[Selvaraju	et	al.	(2017)	«	Grad-CAM:	Visual	explanations	from	deep	networks	via	gradient-based	localization	»]	
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The	case	of	deep	NNs	

2.   Sample-based	explanation	methods	
•  Attribute	the	decision	to	previously	observed	samples		

To evaluate the influence of the samples, we consider a scenario where humans need to inspect the
dataset quality to ensure an improvement of the model’s performance in the test data. Real-world
data is bound to be noisy, and the bigger the dataset becomes, the more difficult it will be for humans
to look for and fix mislabeled data points. It is crucial to know which data points are more important
than the others to the model so that prioritizing the inspection can facilitate the debugging process.

To show how well our method does in dataset debugging, we run a simulated experiment on CIFAR-
10 dataset [17] with a task of binary classification with logistic regression for the classes automobiles
and horses. The dataset is initially corrupted, where 40 percent of the data has the labels flipped,
which naturally results in a low test accuracy of 0.55. The simulated user will check some fraction of
the train data based on the order set by several metrics including ours, and fix the labels. With the
corrected version of the dataset, we retrain the model and record the test accuracies for each metrics.
For our method, we train an explainable model by mimimizing (3) as explained in section 3.1. The
L2 weight decay is set to 1e�2 for all methods for fair comparison. All experiments are repeated for
5 random splits and we report the average result. In Figure 2 we report the results for four different
metrics: “ours” picks the points with bigger |↵ij | for training instance i and its corresponding label j;
“influence” prioritizes the training points with bigger influence function value; and “random” picks
random points. We observe that our method recovers the same amount of training data as the influence
function while achieving higher testing accuracy. Nevertheless, both methods perform better than the
random selection method.

4.2 Excitatory (Positive) and Inhibitory (Negative) Examples

We visualize the training points with high representer values (both positive and negative) for some
test points in Animals with Attributes (AwA) dataset [18] and compare the results with those of the
influence functions. We use a pre-trained Resnet-50 [19] model and fine-tune on the AwA dataset to
reach over 90 percent testing accuracy. We then generate representer points as described in section
3.2. For computing the influence functions, just as described in [10], we froze all top layers of the
model and trained the last layer. We report top three points for two test points in the following
Figures 3 and 4. In Figure 3, which is an image of three grizzly bears, our method correctly returns
three images that are in the same class with similar looks, similar to the results from the influence
function. The positive examples excite the activation values for a particular class and supports the
decision the model is making. For the negative examples, just like the influence functions, our method
returns images that look like the test image but are labeled as a different class. In Figure 4, for the
image of a rhino the influence function could not recover useful training points, while ours does,
including the similar-looking elephants or zebras which might be confused as rhinos, as negatives.
The negative examples work as inhibitory examples for the model – they suppress the activation
values for a particular class of a given test point because they are in a different class despite their
striking similarity to the test image. Such inhibitory points thus provide a richer understanding, even
to machine learning experts, of the behavior of deep neural networks, since they explicitly indicate
training points that lead the network away from a particular label for the given test point. More
examples can be found in the supplementary material.

Ours Influence Function

Figure 3: Comparison of top three positive and negative influential training images for a test point
(left-most column) using our method (left columns) and influence functions (right columns).

6

[Chih-Kuan	Yeh	et	al.	(2018)	«	Representer	Point	Selection	for	Explaining	Deep	Neural	Networks	»,	
NIPS-2018]	
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The	case	of	deep	NNs	

3.   Concept-based	explanation	methods	
•  estimates	the	importance	of	a	concept	(intermediate	category)		
to	a	given	class	

Figure 1: The overview of our concept discovering algorithm. Given a deep classification
model, we first provide semantically meaningful clusters by segmentation followed by k-means
clustering as in [10]. Then, we discover complete and interpretable concepts under the
constraint that each concept is salient to one (or a few) unique cluster, while projecting
features onto the span of concept vectors does not deteriorate the classification performance.
After the concepts of interest are retrieved, we can calculate the importance of each concept
and the classes where each concept is the most important by ConceptSHAP.
shown to play an essential role in human minds for making generalizations [3, 28]. With a similar
motivation, “concepts” can explain the decision-making rationale of DNNs and their generalizable
knowledge. A few recent studies have thus focused on bringing such concept-based explainability
to DNNs. Based on the common implicit assumption that the concepts should lie in certain linear
subspaces of some intermediate DNN activations, they aim to find such concepts efficiently and
relate them to data. These have ranged from supervised approaches [15, 32] that obtain concept
representations given human-labeled data on salient concepts, to purely unsupervised approaches
that provide concept explanations automatically without human labeling, ranging from k-means
clustering of DNN activations [10], to a self-interpretable Bayesian generative model [4]. A key
motivating question we ask in this paper is whether we could build on such unsupervised approaches
to extract concepts, but where in addition to ensuring that the concepts are representative of the
DNN activations, we would also like to ensure the additional facet that they are sufficiently predictive
of the DNN function itself.

This leads naturally to a crucial unanswered question in concept-based explanation, which is
how to evaluate whether a set of concepts are sufficient for prediction. Previous concept-based
explanations select concepts that are salient to a particular class [15]. However, selecting a set of
salient concepts does not guarantee that these concepts are sufficient for prediction. The notion of
explanations that are sufficient for prediction is also called the “completeness” of explanations [11],
which is acknowledged to be valuable for evaluating explanations [29]. In this work, we propose such
a completeness metric for a given set of concept explanations. The completeness measurement can be
applied to a set of concept vectors that lie in the span of some intermediate DNN layer activations,
which is a general assumption in previous concept-based explanation works [15]. The core idea is that,
by projecting the activations onto the span of concept vectors, we keep just that information that
can be explained by the concepts, and discard the information that are orthogonal to all concepts.
Thus, when projecting activations onto the span of concept activation vectors result in no loss in
prediction accuracy, we can learn concepts that are “complete” (i.e. sufficient for prediction).

Interestingly, we show that under a stringent degeneracy condition on the DNNs, principal
component analysis (PCA) on the DNN activations can be shown to maximize these concept
completeness metrics. Of course such degeneracy assumptions likely not hold in general, so that
maximizing these completeness metrics could be viewed as a generalization of PCA that additionally

2

[Chih-Kuan	Yeh	et	al.	(2019)	«	On	concept-based	explanations	in	deep	neural	networks	»]	
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The	case	of	deep	NNs	

3.   Concept-based	explanation	methods	
•  estimates	the	importance	of	a	concept	(intermediate	category)		
to	a	given	class	

•  Concepts	are	taken	(by	clustering)	at	an	intermediate	layer	of	the	NN		
•  Each	concept	should	be	interpretable	and	semantically-meaningful	

Figure 1: The overview of our concept discovering algorithm. Given a deep classification
model, we first provide semantically meaningful clusters by segmentation followed by k-means
clustering as in [10]. Then, we discover complete and interpretable concepts under the
constraint that each concept is salient to one (or a few) unique cluster, while projecting
features onto the span of concept vectors does not deteriorate the classification performance.
After the concepts of interest are retrieved, we can calculate the importance of each concept
and the classes where each concept is the most important by ConceptSHAP.
shown to play an essential role in human minds for making generalizations [3, 28]. With a similar
motivation, “concepts” can explain the decision-making rationale of DNNs and their generalizable
knowledge. A few recent studies have thus focused on bringing such concept-based explainability
to DNNs. Based on the common implicit assumption that the concepts should lie in certain linear
subspaces of some intermediate DNN activations, they aim to find such concepts efficiently and
relate them to data. These have ranged from supervised approaches [15, 32] that obtain concept
representations given human-labeled data on salient concepts, to purely unsupervised approaches
that provide concept explanations automatically without human labeling, ranging from k-means
clustering of DNN activations [10], to a self-interpretable Bayesian generative model [4]. A key
motivating question we ask in this paper is whether we could build on such unsupervised approaches
to extract concepts, but where in addition to ensuring that the concepts are representative of the
DNN activations, we would also like to ensure the additional facet that they are sufficiently predictive
of the DNN function itself.

This leads naturally to a crucial unanswered question in concept-based explanation, which is
how to evaluate whether a set of concepts are sufficient for prediction. Previous concept-based
explanations select concepts that are salient to a particular class [15]. However, selecting a set of
salient concepts does not guarantee that these concepts are sufficient for prediction. The notion of
explanations that are sufficient for prediction is also called the “completeness” of explanations [11],
which is acknowledged to be valuable for evaluating explanations [29]. In this work, we propose such
a completeness metric for a given set of concept explanations. The completeness measurement can be
applied to a set of concept vectors that lie in the span of some intermediate DNN layer activations,
which is a general assumption in previous concept-based explanation works [15]. The core idea is that,
by projecting the activations onto the span of concept vectors, we keep just that information that
can be explained by the concepts, and discard the information that are orthogonal to all concepts.
Thus, when projecting activations onto the span of concept activation vectors result in no loss in
prediction accuracy, we can learn concepts that are “complete” (i.e. sufficient for prediction).

Interestingly, we show that under a stringent degeneracy condition on the DNNs, principal
component analysis (PCA) on the DNN activations can be shown to maximize these concept
completeness metrics. Of course such degeneracy assumptions likely not hold in general, so that
maximizing these completeness metrics could be viewed as a generalization of PCA that additionally

2

[Chih-Kuan	Yeh	et	al.	(2019)	«	On	concept-based	explanations	in	deep	neural	networks	»]	
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The	case	of	deep	NNs	

3.   Concept-based	explanation	
methods	
•  estimates	the	importance	of	a	

concept	(intermediate	category)		
to	a	given	class	

•  Notion	of	completeness	of	the	
concepts	

•  Concepts	are	learned	after	
training	

[Chih-Kuan	Yeh	et	al.	(2019)	«	On	concept-based	explanations	in	deep	neural	networks	»]	Figure 4: The Nearest Neighbors, ConceptSHAP, and related class for each concept obtained
in AwA.
of the second concept usually contains the word "think" at the first or last position followed by
disagreement towards the movie, nearest sub-sentences of the third concept usually contains “think”
in the middle of the sub-sentence followed by the reviewer’s more neutral personal opinion, the
nearest sub-sentences of the fourth concept often contain the phrase “watch it” where “it” refers to
the movie, and the nearest sub-sentences of the fifth concept just contains the word “after”. We find
that the most salient concept by ConceptSHAP value is the concept 4, where all of the top nearest
neighbors explicitly mentioned the word “watch” with a positive sentiment in general. We perform
TCAV test for all concepts with respect to the positive and negative class, and the first 3 concepts
are significant to the class “negative” with TCAV score 1, and the last 2 concepts are significant to
the class “positive” with TCAV score 1.

5.3 Image Classification
Setting: We next perform experiments on Animals with Attribute (AwA) [18] to classify animals
with 50 classes, where we take 26905 images as training data and 2965 images as evaluation data.
Each training data has a ground truth label of one of 50 animals. We train an Inception-V3 model
pre-trained on Imagenet [27] which reaches 0.94 testing accuracy. To obtain the input clusters, we
employ the method of Ghorbani et al. [10], which performs superpixel segmentation and k-means
clustering with images to get 334 input clusters. We then perform our discovering concepts algorithm
given the clusters to obtain 8 concepts with ⌘p1q 0.99.

Results: For each of the 8 discovered concepts, we show the top nearest neighbor patches, the
ConceptSHAP value, and the related classes where the concept has at least twice as large Concept-
SHAP value than any other concepts. From the nearest neighbor of each concept, we find that the
concepts learned by the network mostly consider textures and colors. Since we only learn 8 concepts

10
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What	kind	of	“reasons”	can	we	extract?	

•  Interpretability	of	the	decision	function	

–  Decision	trees	seem	readily	interpretable	

–  Linear	decision	functions	are	less	so	

–  Random	forests	are	much	less	still	

–  SVM	

–  Neural	Networks	
Require	a	difficult	analysis		
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Knowledge	as	input	to	ML	

•  Knowledge	in	the	learning	algorithm	

–  Constraints	on	the	hypothesis	space:	representation	bias	

Looking	for	sparse	linear	hypotheses	

Favors	hypotheses	with	few	non	null	coefficients	

Data Algorithm

Prediction rule

Knowledge

How it does it

Knowledge

1 2
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Knowledge	as	input	to	ML	

•  Knowledge	in	the	learning	algorithm	

Looking	for	sparse	linear	hypotheses	

Favors	hypotheses	with	few	non	null	coefficients	

Data Algorithm

Prediction rule

Knowledge

How it does it

Knowledge

1 2

“Hey,	I	am	looking	for	sparse	hypotheses,	and	if	this	fits	the	data,	I	am	satisfied”	
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Explaining	any	classifier?	

•  [Ribeiro	et	al.	(2016)]:	LIME			(Local	Interpretable	Model-agnostic	Explanations)	

–  An	explanation	is	a	local	linear	approximation	of	the	decision	function	

–  Whereas	the	model	may	be	very	complex	globally,	it	is	easier	to	approximate	it	around	the	
vicinity	of	a	particular	instance.		

–  While	treating	the	model	as	a	black	box,	perturb	the	instance	we	want	to	explain	and	learn	a	
sparse	linear	model	around	it,	as	an	explanation.	

“Explaining”	the	instance	+	

sample	instances	around	+,	and	weight	them	
according	to	their	proximity	to	+	(weight	here	is	
indicated	by	size).		
Then	learn	a	linear	model	(dashed	line)	that	
approximates	the	model	well	in	the	vicinity	of		+		
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Explaining	any	classifier?	

•  [Ribeiro	et	al.	(2016)]:	LIME			(Local	Interpretable	Model-agnostic	Explanations)	

sneeze
weight
headache
no fatigue
age

Flu sneeze

headache

Model Data and Prediction

Explainer 
(LIME)

Explanation

no fatigue

Human makes decision

Figure 1: Explaining individual predictions. A model predicts that a patient has the flu, and LIME highlights

the symptoms in the patient’s history that led to the prediction. Sneeze and headache are portrayed as

contributing to the “flu” prediction, while “no fatigue” is evidence against it. With these, a doctor can make

an informed decision about whether to trust the model’s prediction.

getting humans to trust and use machine learning e↵ectively,
if the explanations are faithful and intelligible.
The process of explaining individual predictions is illus-

trated in Figure 1. It is clear that a doctor is much better
positioned to make a decision with the help of a model if
intelligible explanations are provided. In this case, an ex-
planation is a small list of symptoms with relative weights –
symptoms that either contribute to the prediction (in green)
or are evidence against it (in red). Humans usually have prior
knowledge about the application domain, which they can use
to accept (trust) or reject a prediction if they understand the
reasoning behind it. It has been observed, for example, that
providing explanations can increase the acceptance of movie
recommendations [12] and other automated systems [8].

Every machine learning application also requires a certain
measure of overall trust in the model. Development and
evaluation of a classification model often consists of collect-
ing annotated data, of which a held-out subset is used for
automated evaluation. Although this is a useful pipeline for
many applications, evaluation on validation data may not
correspond to performance “in the wild”, as practitioners
often overestimate the accuracy of their models [20], and
thus trust cannot rely solely on it. Looking at examples
o↵ers an alternative method to assess truth in the model,
especially if the examples are explained. We thus propose
explaining several representative individual predictions of a
model as a way to provide a global understanding.
There are several ways a model or its evaluation can go

wrong. Data leakage, for example, defined as the uninten-
tional leakage of signal into the training (and validation)
data that would not appear when deployed [14], potentially
increases accuracy. A challenging example cited by Kauf-
man et al. [14] is one where the patient ID was found to be
heavily correlated with the target class in the training and
validation data. This issue would be incredibly challenging
to identify just by observing the predictions and the raw
data, but much easier if explanations such as the one in
Figure 1 are provided, as patient ID would be listed as an
explanation for predictions. Another particularly hard to
detect problem is dataset shift [5], where training data is
di↵erent than test data (we give an example in the famous
20 newsgroups dataset later on). The insights given by expla-
nations are particularly helpful in identifying what must be
done to convert an untrustworthy model into a trustworthy
one – for example, removing leaked data or changing the
training data to avoid dataset shift.

Machine learning practitioners often have to select a model
from a number of alternatives, requiring them to assess
the relative trust between two or more models. In Figure

Figure 2: Explaining individual predictions of com-

peting classifiers trying to determine if a document

is about “Christianity” or “Atheism”. The bar chart

represents the importance given to the most rele-

vant words, also highlighted in the text. Color indi-

cates which class the word contributes to (green for

“Christianity”, magenta for “Atheism”).

2, we show how individual prediction explanations can be
used to select between models, in conjunction with accuracy.
In this case, the algorithm with higher accuracy on the
validation set is actually much worse, a fact that is easy to see
when explanations are provided (again, due to human prior
knowledge), but hard otherwise. Further, there is frequently
a mismatch between the metrics that we can compute and
optimize (e.g. accuracy) and the actual metrics of interest
such as user engagement and retention. While we may not
be able to measure such metrics, we have knowledge about
how certain model behaviors can influence them. Therefore,
a practitioner may wish to choose a less accurate model for
content recommendation that does not place high importance
in features related to “clickbait” articles (which may hurt
user retention), even if exploiting such features increases
the accuracy of the model in cross validation. We note
that explanations are particularly useful in these (and other)
scenarios if a method can produce them for any model, so
that a variety of models can be compared.

Desired Characteristics for Explainers
We now outline a number of desired characteristics from
explanation methods.
An essential criterion for explanations is that they must

be interpretable, i.e., provide qualitative understanding
between the input variables and the response. We note that
interpretability must take into account the user’s limitations.
Thus, a linear model [24], a gradient vector [2] or an additive
model [6] may or may not be interpretable. For example, if
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Explaining	any	classifier?	

•  [Ribeiro	et	al.	(2016)]:	LIME			(Local	Interpretable	Model-agnostic	Explanations)	

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top

3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.
Even though explanations of multiple instances can be

insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-

stances (documents) and columns represent features

(words). Feature f2 (dotted blue) has the highest im-

portance. Rows 2 and 5 (in red) would be selected

by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for

for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for

V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i},W, I)
end while

return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .



Explanations	in	Expert	Systems	

Why	should	tetracycline	not	be	prescribed	to	a	child	under	8	years	of	age?	

	

Connaissances	justificatives	
Dépôt	de	la	drogue	sur	les	os	en	développement	

						Noircissement	définitif	des	dents	

												Coloration	socialement	indésirable	

																		Ne	pas	administrer	de	tétracycline	aux	enfants	de	moins	de	8	ans	

Notion	d’effets	secondaires	indésirables	

Relations	de	causalité	
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Explanations	in	Expert	Systems	

Why	should	tetracycline	not	be	prescribed	to	a	child	under	8	years	of	age?	

Supporting	knowledge	
Drug	deposition	on	developing	bones	

						Permanent	blackening	of	the	teeth	

												Socially	undesirable	staining	

																		Do	not	give	tétracycline	to	children	under	8	years	of	age	

Notion	of	undesirable	secondary	effects	

Causality	relationship	
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Explanation	obtained	by	“decompiling”	the	initial	reasoning		
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Explanation-Based	justification:	decompiling	

Generalized	search	tree	resulting	from	regression	of	the	target	concept	in	the	proof	tree		
by	computing	at	each	step	the	most	general	literals	allowing	this	step.	
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Reasons	not	always	in	need	

•  When	interpretability	is	NOT	needed?	
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Reasons	not	always	in	need	

•  When	interpretability	is	NOT	needed?	

–  When	low	risk	associated	with	the	decision	

•  E.g.	recommendation	for	a	movie	

–  When	good	guarantees	on	performance	exist	

•  E.g.	character	recognition	
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When	reasons	are	in	need	

•  When	interpretability	IS	needed?	
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When	reasons	are	in	need	

•  When	interpretability	IS	needed?	

1.  With	high	risk	decisions	

•  E.g.		chirurgical	operation	
•  E.g.		shutting	down	a	nuclear	plant	
•  E.g.		autonomous	vehicle	
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When	reasons	are	in	need	

•  When	interpretability	IS	needed?	

1.  With	high	risk	decisions	

•  E.g.		chirurgical	operation	
•  E.g.		shutting	down	a	nuclear	plant	
•  E.g.		autonomous	vehicle	
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When	reasons	are	in	need	

•  When	interpretability	IS	needed?	

2.  Satisfying	curiosity		(what	science	is	about)	

•  E.g.		explain	surprising	results	
•  E.g.		when	no	easy	explanation	exists	
•  E.g.		when	the	decision	function	must	be	included	in	a	larger	inference	system	
(a	domain	theory)	
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When	reasons	are	in	need	

•  When	interpretability	IS	needed?	

3.   Debugging	/	exchanges	between	sub-systems	

•  E.g.	why	is	that	decision	wrong	(counterfactual)	
•  E.g.	if	a	bicycle	is	recognized	because	it	has	two	wheels,		
							what	if	one	is	hidden	behind	side	bags?	

•  E.g.	why	the	system	seems	gender	biased?	
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A	paradox	

•  An	interpretable	system	can	be	manipulated	

•  E.g.	if	someone	knows	that	a	loan	is	granted	if	you	have	more		
							than	2	credit	cards	

	

In	order	not	to	be	manipulated,		

the	predictive	system	must	use	causal	factors	
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Identification	of	causal	relationships	

•  In	images	

(a) Original image xj (b) Object image xo
j (c) Context image xc

j

Figure 4: Blackout processes for object of interest “dog”. Original images xj produce features
{fjl}l and class-probabilities {cjk}k. Object images xo

j produce features {fo
jl}l. Context images xc

j

produce features {f c
jl}l. Blackout processes are performed after image normalization, in order to

obtain true zero (black) pixels.

multiple objects from different categories. The objects may appear at different scales and angles
and may be partially visible or occluded. In the PASCAL dataset, we study all the twenty classes
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, and television. This dataset contains 11541 images. In the
COCO dataset, we study the same classes. This selection amounts to 99,309 images. We preprocess
the images to have a shortest side of 224 pixels, and then take the central 224 ⇥ 224 crop.

4.2 Feature extraction

We use the last hidden representation (before its nonlinearity) of a residual deep convolutional neural
network of 18 layers [3] as a feature extractor. This network was trained on the entire ImageNet
dataset [3]. In particular, we denote by fj = f(xj) 2 R512 the vector of real-valued features
obtained from the image xj 2 R3⇥224⇥224 using this network.

Building on top of these features and using the images from the PASCAL dataset, we train a neural
network classifier formed by two hidden layers of 512 units each to distinguish between the 20
classes under study. In particular, we denote by cj = c(xj) 2 R20 the vector of continuous log odds
(activations before the classifier nonlinearity) obtained from the image xj 2 R3⇥224⇥224 using this
classifier. We use features before their nonlinearity and log odds instead of the class probabilities or
class labels because NCC has been trained on continuous data with full support on R.

In the following we describe how to compute, for each feature l = 1, . . . , 512, four different scores:
its object score, context score, causal score, and anticausal score. Importantly, the object/context
scores are computed independently from the causal/anticausal scores. For simplicity, the follow-
ing sections describe how to compute scores for a particular object of interest k. However, our
experiments will repeat this process for all the twenty objects of interest.

4.2.1 Computing “object” and “context” feature scores

We featurize each image xj in the COCO dataset in three different ways, for all j = 1 . . . ,m. First,
we featurize the original image xj as fj := f(xj). Second, we blackout the context of the objects
of interest k in xj by placing zero-valued pixels outside their bounding boxes. This produces the
object image xo

j , as illustrated in Figure 4b. We featurize xo
j as fo

j = f(xo
j). Third, we blackout the

objects of interest k in xj by placing zero-valued pixels inside their bounding boxes. This produces
the context image xc

j , as illustrated in Figure 4c. We featurize xc
j as f c

j = f(xc
j).

Using the previous three featurizations we compute, for each feature l = 1, . . . , 512, its object score

sol =
Pm

j=1|fc
jl�fjl|Pm

j=1|fjl|
and its context score scl =

Pm
j=1|fo

jl�fjl|Pm
j=1|fjl|

. Intuitively, features with high object

scores are those features that react violently when the object of interest is removed from the image.

Furthermore, we compute the log odds for the presence of the object of interest k in the original
image xj as cjk = c(xj)k.

7

[	David	Lopez-Paz,	Robert	Nishihara,	Soumith	Chintala,	Bernhard	Schölkopf,	and	Léon	Bottou.		
«	Discovering	causal	signals	in	images	».	arXiv	preprint	arXiv	:1605.08179,	2016.	]	
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Outline	

1.  	What	is	reasoning	(1)	

2.  	Machine	Learning	nowadays:	a	path	to	fast	thinking	

3.  	The	future	of	Machine	Learning:	what	is	reasoning	(2)	

4.  	Conclusion	
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Claims	about	machine	learning	and	reasoning	

1.  Reasoning	does	not	need	to	come	first	

2.  Intelligence	lies	in	the	interplay	of	many	specialized	modules	

3.  In	order	to	interact	in	the	long	term	and	trust	each	other’s	

productions,	these	modules	need	to	exchange	“reasons”	for	
their	results	

4.  	Reasons	come	after	the	fact.		
They	are	most	of	the	time	post	hoc	reconstructions	
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Central	question	

•  How	do	we	reconstruct	reasons	after	the	fact	such	that	

–  They	provide	justifications	for	the	conclusions	reached	

–  And	are	as	exact	and	informative	as	possible	
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