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Autonomous Learning and 
Development in Human Infants

• How do developmental structures form? 

• What is their role? 3
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Families of 
developmental

« forces »

Body morphology and growth :
• Morphology, body growth and maturation
• Motor and perceptual primitives 

Cognitive biases: 
• Affordances
• Perceptual/linguistic categories grounded in action
• Hierarchies of actions, states, objectives

Social learning, imitation, 
emulation
• Imitation of trajectories and goals
• Learning combinatorial motor primitives
• Optimal teaching

Intrinsic motivation, curiosity, 
active learning
• Autonomous/unsupervised collection of data
• Efficient learning of world models
• Self-organization of developmental trajectories

(McGeer, 1991)

(Ly and Oudeyer, 2010)



Spontaneous active exploration

(Francis Vachon)
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Intrinsic motivation, curiosity and 
active learning

è Intrinsic drive to reduce uncertainty, and to experiencing novelty, surprise,
cognitive dissonance, challenge, incongruences, …
èOptimal interest = optimal difficulty = neither trivial nor too difficult challenges
Berlyne (1960), White (1960), Kagan (1972), Csikszentmihalyi (1996), (Kidd et al., 2012), 
…

Flow theory
Csikszentmihalyi
(1996)



(Frontiers in Neuroscience 2007; IEEE TEC 2007; Trends in Cognitive Science, Nov. 2013; 
Progress in Brain Research, 2016;  Frontiers in Neuroscience, 2014; Scientific Reports, 2016; 
PNAS, 2016; Nature Reviews Neuro. 2018)

Development of a unified formal and theoretical framework
in psychology and neuroscience

Since the earliest days of psychology and neuroscience, it 
has been recognized that the stream of evidence imping-
ing on sensory receptors is ambiguous and incomplete, 
and animals must use active inference to make sense of 
the world. In vision, which is a dominant sensory modal-
ity in humans and non-human primates, the brain must 
use a retinal input that is 2D, constantly moving and 
ambiguous to infer the true state of a world that is stable, 
3D and populated by meaningful entities. The relative 
insufficiency of the raw sensory input and the conse-
quent need for active interpretation extend to all sensory 
modalities and all types of decision makers and behav-
ioural situations. The efficiency with which biological 
nervous systems satisfy this goal is arguably a crowning 
achievement of evolution; its magnitude is made fully 
apparent by modern artificial intelligence applications 
such as drones or self-driving cars, in which it remains 
a considerable challenge to interpret rich, naturalistic 
sensory streams.

Among the most striking manifestations of active 
interpretation is the fact that, rather than building com-
plete representations of all the information available to 
them, intelligent beings sparsely sample the rich, incom-
ing sensory streams. Sparse sampling is a necessity for 
any limited-capacity organism that can sense much more 
information than it can fully process. Sampling is rou-
tinely manifested in attention and active-sensing behav-
iours, whereby animals inspect — that is, touch, listen, 
whisk or look at — selected sensory cues. In addition, it 
is expressed in intrinsically motivated behaviours such 

as curiosity that reflect animals’ interest in specific topics 
or questions.

Despite the ubiquity and importance of sampling 
strategies, the organization and neural substrates of 
these  strategies remain oddly unexplored. Studies 
of curiosity are relative newcomers to the neuroscience 
field1,2. Similarly, although attention and active sensing 
have been investigated in voluminous literatures, these 
literatures focus on the ways in which attention and 
active sensing modulate other systems after they are 
deployed, rather than on the mechanisms that direct 
attention and generate sampling policies. Therefore, very 
little is known regarding the motives that drive attention 
and curiosity3. How do animals deem some sources of 
information to be more attention-worthy than others? 
How do they decide which stimuli or questions warrant 
investigation and which ones can be safely ignored?

Here, we review a nascent neuroscientific litera-
ture that examines these questions relying on novel 
active-sampling tasks inspired by earlier studies in 
cognitive psychology and the animal-learning litera-
ture (for examples, see REFS4–6). We take an unusually 
integrative approach and focus on the commonalities 
between attention and curiosity and their relationship 
with decision-making, in particular in the learning and 
exploration–exploitation literature. Although attention  
and curiosity each encompass distinct and heterogeneous  
mechanisms and have been discussed in separate litera-
tures, we propose that an integrative approach is appro-
priate at this stage because it highlights a core question 
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The child as a sense-making organism: 
Exploring to make good predictive models of the world and control it!
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Robotic Playgrounds

Discovery of sensorimotor affordances
Discovery of 

speech communication

(Oudeyer et al., 2004; 2007) (Forestier et al., 2016, 2017)

Discovery of 
nested tool use

Essential ingredients:
• Dynamic movement primitives (Schaal, Ijspeert et al, 2003, 2007)
• Object-based perceptual primitives (like infants, builds on prior perceptual learning)
• Self-supervised learning forward/inverse models with hindsight learning and episodic

memory
• Curiosity-driven self-organization of learning curriculum through goal exploration

Figure 5: Robotic Tool Use Environment. Left: a Poppy Torso robot (the learning agent) is mounted
in front of two joysticks that can be used as tools to act on other objects: a Poppy Ergo robotic toy
and a ball that can produce light and sound. Right: 6 copies of this setup are running in parallel to
gather more data. Some Ergo robots are placed between robots: they act as distractors that move
randomly, independently of the agents.

The outcome of an episode is a vector composed of the end position of the agent (2D), shovel
(2D), pickaxe (2D), cart (1D) and 3 distractors (2D each) positions along with a binary vector (5D)
encoding the 5 diamond blocks’ states.

This environment is interesting to study modular IMGEP approaches since it is composed of a set of
linked tasks of increasing complexity. Exploring how to navigate will help to discover the tools and,
eventually, will allow to break blocks and move the cart.

3.1.3 Robotic Tool Use Environment

In order to benchmark different learning algorithms in a complex realistic environment with high-
dimensional action and outcome spaces, we designed a real robotic setup composed of a humanoid
arm in front of joysticks that can be used as tools to act on other objects (see Fig. 5).

A Poppy Torso robot (the learning agent) is mounted in front of two joysticks and explores with its
left arm. A Poppy Ergo robot (seen as a robotic toy) is controlled by the right joystick and can push a
ball that controls some lights and sounds. Poppy is a robust and accessible open-source 3D printed
robotic platform [Lapeyre et al., 2014].

The left arm has 4 joints, with a hook at the tip of the arm. A trajectory of the arm is here generated
by radial basis functions with 5 parameters on each of the 4 degrees of freedom (20 parameters in
total).

Two analogical joysticks (Ultrastick 360) can be reached by the left arm and moved in any direction.
The right joystick controls the Poppy Ergo robotic toy, and the left joystick do not control any object.
The Poppy Ergo robot has 6 motors, and moves with hardwired synergies that allow control of
rotational speed and radial extension. A tennis ball is freely moving in the blue arena which is slightly
sloped so that the ball comes close to the center at the end of a movement. The speed of the ball
controls (above a threshold) the intensity of the light of a LED circle around the arena. Finally, when
the ball touches the border of the arena, a sound is produced and varied in pitch depending on ball
position.

Several other objects are included in the environment, with which the agent cannot interact. Two
simulated 2D objects are moving randomly, independently of the agent (imagine a cat and a dog
playing together), with a random walk. Six objects are static: the right hand (3D) of the robot that
is disabled in this experiment, the camera recording the ball trajectory (3D), the blue circular arena
(2D), a yellow toy out-of-reach (2D), the red button also out-of-reach (2D) and the lamp (2D). All
distractor objects are reset after each roll-out.

The context c of this environment represents the current configuration of objects in the scene. In
practice, since only the Ergo and ball are not reset after each roll-out, this amounts to measuring the
rotation angle of the Ergo and of the ball around the center of the arena.

11



What is an « interesting » 
learning experiment?

(verbal) hypotheses from psychology and/or developmental biology:
• Cognitive homeostasis/auto-poiesis, high predictability (Varela and Maturana, 

explo. due to external perturbations)
• High novelty/high uncertainty? (many)
• Knowledge gap, cognitive dissonance? (Kagan, Festinger, Lowenstein)
• Intermediate novelty, intermediate complexity? (Berlyne, Kidd)
• Intermediate challenge? (White, Csikszentmihalyi)

Technical ideas from cognitive modeling or ML:
• High novelty/high uncertainty? (many)
• Surprise? (Itti and Baldi)
• Free energy? (Friston)
• Different forms of information gain/learning progress, e.g.:

• KL-divergence between prior and posterior probabilistic model
• Predictive information (Martius), predictive information gain (Little & Sommer)
• Compression progress (Schmidhuber)
• Empirical improvement of prediction or control (Oudeyer et al.)



The (absolute)
Learning Progress 

hypothesis

Interestingness
= 

proportional to 
empirical

absolute learning progress
(absolute value of derivative)

è Automated
Curriculum Learning

(Oudeyer and Kaplan, 2003; 2007;
Gottlieb et al., 2013; Oudeyer et al., 2016) 
è Few assumptions on underlying learning
machinery and on match between biases and 
real world (as opposed to measures of learning
progress based on KL-divergence measures)
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Inverse model(s)

(e.g. k-nn, L-BFGS, CMA-ES)

Ii : s,'i ! argmin
✓

||'i � Fi(s, ✓)||

Intrinsically Motivated Goal Exploration Processes

times(t)Context

⇡✓
Parameters

of motor
program

(DMP, RNN)

t+�t

Moulin-Frier, C. et al Self-organization of early vocal development
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SUPPLEMENTARY DATA

4.1 VOCALIZATION TYPES

Figure 14 shows the 9 types of vocalizations defined in section 2.1.3 (NN, CN, NC, VN, NV, VV, VC, CV and CC).
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Figure 14. Examples of each vocalization types. Rows (1st) correspond to the type of the first phone and columns (2nd) to the type of the second phone of

the vocalization. There are three possible phone types, as defined in section 2.1.3: the Vowels (V) which have a high intensity (I > 0.9), the Consonants (C)

which have a low intensity (0.1 < I < 0.9) and the None which have almost no intensity (I < 0.1). For example, the plot in the second row (C) third column

(V) corresponds to a CV vocalization, with the same convention as in Figure 4.
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⌧ = {s(t), a(t), . . . , s(t+�t)}
Trajectory:

Behavioural descriptors over full trajectory
(can be cost function measuring achievement of a complex property)

' = ['1(⌧),'2(⌧), . . . ,'i(⌧)]

Forward model(s) (e.g. k-NN+LWR, GMR, neural net)Fi : s, ✓ ! 'i Prediction progress

Competence progress
Intrinsically Motivated Goal Exploration 

(IMGEPs)
(Oudeyer and Kaplan, 2007;
Oudeyer and Baranes, 2013)
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Goal sampling with
Hierarchical

Multi-Armed Bandits

Probability
to sample
(e.g. with
EXP3 alg.)
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goal achievement

errors
time
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Utility =
Absolute
Learning  progress

Goal 
parameters
space
(continuous, 
high dim)

(Oudeyer and Kaplan, IEEE TEC 2007; Baranes and Oudeyer, RAS 2013; Colas et al., ICML 2019)
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Exploring omni-directional locomotion

⇡✓ : oscillators in 8 motors, ✓ 2 [�1, 1]24

' 2 R3 : translation and rotation over 3s

(Baranes and Oudeyer, IROS 2010, RAS 2013)

Policies:

Behavioral descriptors:
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Figure 6.29 – Illustration d’un ensemble d’objectifs générés par RIAC dans l’espace des tâches, au cours d’une
expérience type constituée de 10000 mouvements. On peut remarquer la différence importante de taille entre
l’espace des tâches de [�45; 45]⇥ [�45; 45]⇥ [�⇡;⇡], et l’espace atteignable, contenu dans [�10; 10]⇥ [�10; 10]⇥
[�⇡;⇡]. Les objectifs colorés en rouge correspondent aux objectifs atteints lors de l’exploration, et le contour noir
délimite l’espace contenant les objectifs atteignables.

Figure 6.30 – Distributions de l’ensemble des dé-
placements effectués par le quadrupède à l’intérieur de
l’espace des tâches u, v, ✓, dans le référentiel propre
du robot (la position (u, v, ✓) = (0, 0, 0) correspond à
sa position de départ), après 10000 expérimentations
(lancement d’une synergie motrice pendant un inter-
valle de temps fixé), en utilisant les méthodes d’explo-
rations ACTUATEUR-ALEATOIRE, ACTUATEUR-
RIAC, SAGG-ALEATOIRE et SAGG-RIAC. Les lignes
rouges représentent les limites d’atteinte estimées.

comprise dans [�10; 10] ⇥ [�10; 10] ⇥ [�⇡; ⇡], alors que l’espace des tâches est beaucoup plus large :
[�45; 45]⇥ [�45; 45]⇥ [�⇡; ⇡] (voir aussi Fig. 6.29 pour une illustration de la taille de l’espace des tâches,
relativement à l’espace atteignable). Nous pouvons aussi noter l’aspect asymétrique de cette répartition
selon l’axe v, qui est dû au poids de la tête du robot.

Tout d’abord, la méthode SAGG-ALEATOIRE semble augmenter légèrement l’espace exploré sur les
axes u et v, comparé aux méthodes ACTUATEUR, comme montré par la plus grande concentration de
positions explorées dans l’intervalle [�5; �3] [ [3; 5] de u. Cependant, ce changement ne semble pas très

Figure 4: A robot can learn to walk just by exploring smartly a sensorimotor
space. In the experiment. a progress-driven kernel controls the movement of the
di�erent motors of a four-legged robot. For each motor, it chooses the period,
the phase and the amplitude of a sinusoidal signal. The prediction system tries
to predict the e�ect of the di�erent set of parameters in the way the image
captured by a camera placed on the robot’s head is modified. This indirectly
reflects the movement of its torso. At each iteration the kernel produces the
values for the next parameter set in order to maximize the reduction of the
prediction error.
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(Baranes and Oudeyer, Robotics and Autonomous Systems, 2013)
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rouges représentent les limites d’atteinte estimées.
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mentations.

6.6 Expérience 3 : Contrôle d’une Canne à Pêche

Figure 6.32 – Bras robot de 4 DDL possédant une canne à pêche fixée à son extrémité. Ce bras est contrôlé via
l’utilisation de synergies motrices qui affectent la vitesse de chaque articulation motrice et sont paramétrées par un
ensemble de 4 valeurs. Les expériences considèrent un espace des tâches à deux dimensions (x, y) qui correspond
à la position du bouchon lorsqu’il touche la surface de l’eau après que le bras ait effectué un mouvement.

L’expérience suivante consiste en l’apprentissage du contrôle d’une canne à pêche dans le but de faire
entrer en contact le bouchon avec l’eau à une position précise du plan horizontal formé par l’eau. La
plateforme robotisée est simulée en utilisant le simulateur Breve, comme dans l’expérience précédente. La
canne est fixée à un bras robotisé à 4 DDL contrôlé par des synergies motrices qui agissent sur la vitesse
de chaque articulation et sont paramétrées par les valeurs ⌥ = (v1, v2, v3, v4), vi 2 [0; 1]. Pus précisément,
pour chaque expérimentation du robot, nous utilisons un contrôleur PID bas niveau pré-programmé qui
suit la vitesse désirée vi de chaque articulation i pendant une courte durée pré-déterminée (2 secondes), à
partir de la position de repos et jusqu’à un arrêt soudain du mouvement. Pendant le mouvement, ainsi que
quelques secondes après, nous monitorons la position 3D du bouchon afin de détecter un potentiel contact
avec l’eau (un plan correspondant au niveau de l’eau). Si l’eau est touchée, nous extrayons les coordonnées
2D (x, y) du bouchon sur le plan qu’elle forme (si non, nous ne considérons pas cet essai). Ces coordonnées,
ainsi que les paramètres des synergies, seront utilisés pour décrire le modèle direct du système représenté
par la relation (v1, v2, v3, v4) ! (x, y). L’apprentissage s’effectue donc via un enregistrement de chaque
ensemble {(v1, v2, v3, v4), (x, y)}i en tant qu’exemple d’apprentissage. Dans un tel espace sensorimoteur,
étudier le comportement de SAGG-RIAC est pertinent étant donné l’aspect flexible de la ligne, qui rend
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MACOB: Modular population-based IMGEPs

Figure 5: Robotic Tool Use Environment. Left: a Poppy Torso robot (the learning agent) is mounted
in front of two joysticks that can be used as tools to act on other objects: a Poppy Ergo robotic toy
and a ball that can produce light and sound. Right: 6 copies of this setup are running in parallel to
gather more data. Some Ergo robots are placed between robots: they act as distractors that move
randomly, independently of the agents.

The outcome of an episode is a vector composed of the end position of the agent (2D), shovel
(2D), pickaxe (2D), cart (1D) and 3 distractors (2D each) positions along with a binary vector (5D)
encoding the 5 diamond blocks’ states.

This environment is interesting to study modular IMGEP approaches since it is composed of a set of
linked tasks of increasing complexity. Exploring how to navigate will help to discover the tools and,
eventually, will allow to break blocks and move the cart.

3.1.3 Robotic Tool Use Environment

In order to benchmark different learning algorithms in a complex realistic environment with high-
dimensional action and outcome spaces, we designed a real robotic setup composed of a humanoid
arm in front of joysticks that can be used as tools to act on other objects (see Fig. 5).

A Poppy Torso robot (the learning agent) is mounted in front of two joysticks and explores with its
left arm. A Poppy Ergo robot (seen as a robotic toy) is controlled by the right joystick and can push a
ball that controls some lights and sounds. Poppy is a robust and accessible open-source 3D printed
robotic platform [Lapeyre et al., 2014].

The left arm has 4 joints, with a hook at the tip of the arm. A trajectory of the arm is here generated
by radial basis functions with 5 parameters on each of the 4 degrees of freedom (20 parameters in
total).

Two analogical joysticks (Ultrastick 360) can be reached by the left arm and moved in any direction.
The right joystick controls the Poppy Ergo robotic toy, and the left joystick do not control any object.
The Poppy Ergo robot has 6 motors, and moves with hardwired synergies that allow control of
rotational speed and radial extension. A tennis ball is freely moving in the blue arena which is slightly
sloped so that the ball comes close to the center at the end of a movement. The speed of the ball
controls (above a threshold) the intensity of the light of a LED circle around the arena. Finally, when
the ball touches the border of the arena, a sound is produced and varied in pitch depending on ball
position.

Several other objects are included in the environment, with which the agent cannot interact. Two
simulated 2D objects are moving randomly, independently of the agent (imagine a cat and a dog
playing together), with a random walk. Six objects are static: the right hand (3D) of the robot that
is disabled in this experiment, the camera recording the ball trajectory (3D), the blue circular arena
(2D), a yellow toy out-of-reach (2D), the red button also out-of-reach (2D) and the lamp (2D). All
distractor objects are reset after each roll-out.

The context c of this environment represents the current configuration of objects in the scene. In
practice, since only the Ergo and ball are not reset after each roll-out, this amounts to measuring the
rotation angle of the Ergo and of the ball around the center of the arena.
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Curiosity-driven discovery of tool use

https://www.youtube.com/watch?v=NOLAwD4ZTW0
(Forestier et al., 2017)
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CURIOUS: intrinsically motivated
modular multi-goal Deep RL

Modular UVFA (extended-UVFA)

Goal types and goal values:
Move gripper to (x,y,z)
Pickandplace cube2 at (x,y,z)
Push(cube1) at position (x,y)
Stack cube1 over cube3 … 

(Colas et al., ICML19)

Distractors

Controllable objects

Modular
replay buffer

LP-based
sampling of 

modules 
and goals

External world

with hinsight learning
(module and goal substitution)



Recovery following a sensory 
failure. 

CURIOUS recovers 95 % of its 
original performance twice as 

fast as M-UVFA+HER.

Competence Absolute Learning 
Progress

Selection Probabilities

Forgetting due to 
interferences among
modules/goals

Mitigated thanks to 
LP-based re-
exploration

Deep RL based IMGEPs (Curious) vs. Population-based IMGEPs:
+ better generalization

- Slower initial discoveries



How to learn (modular) 
representation of goals?

2 approaches:
1) Unsupervised learning (beta-VAEs) 

(Laversanne-Finot et al, CoRL 2018)

2) Leveraging language and its compositionality
(Lair et al., Vigil workshop at Neurips 2019)



MUGL: Unsupervised goal learning
and exploration

(Péré et al., ICLR 2018; Laversanne-Finot et al., CoRL 2018)

Scene reconstruction/
prediction

Pixel-level scene
perception

(Higgins 
et al., 
2017)



(a) Disentangled representation (�VAE) (b) Entangled representation (VAE)

Figure 5: Interest evolution for each module during exploration. In the case of a disentangled
representation the algorithm shows interest only for the module which correspond to latent variables
encoding for the position of the ball (which is unknown by the agent, which does not distinguish
between the ball and the distractor).

The evolution of the interest of the different modules through exploration is represented in Figure 5a.
First, in the disentangled case, one can see that the interest is high only for the modules corresponding
to the latent variables encoding for the ball position.2 This is natural since these latent variables are
the only ones that can be learned to control with motor commands. In the entangled case, the interest
of each module follows a random trajectory, with no module standing out with a particular interest.
This effect can be understood as follows: the entanglement introduces spurious correlations between
the observations and the tasks in every module, which bring the interest measures to follow random
fluctuations based on the collected observations. These correlations, in turn, lead the agent to sample
more frequently policies that in fact did not have any impact on the observation, making the overall
performance worse (see Appendix 6.1 and 6.6 for details).

Independently Controllable Features

As explained above and illustrated in Figure 5a, when the representation is disentangled, the MGE
algorithm is able to monitor the learnability of certain modules (possibly individual latent features,
see 6.5), and leverage it to focus exploration on goals with high learning progress. This is illustrated
on the interest curves by the clear difference in interest between modules where learning progress
happens and those where it does not. It happens that modules that produce high learning progress
correspond precisely to modules that can be controlled. As such, as a side benefit of using modular
goal exploration algorithms, the agent discovers in an unsupervised manner which are the features
of the environment that can be controlled (and in turn explores them more). This knowledge could
then be used by another algorithm whose performance depends on its ability to know which are the
independantly controllable features of the environment.

5 Conclusion

In this paper we studied the role of the structure of learned goal space representations in IMGEPs.
More specifically, we have shown that when the representation possesses good disentanglement
properties, they can be leveraged by a curiosity-driven modular goal exploration architecture and
lead to highly efficient exploration. In particular, this enables exploration performances as good as
when using engineered features. In addition, the monitoring of learning progress enables the agent to
discover which latent features can be controlled by its actions, and focus its exploration by setting
goals in their corresponding subspace.

The perspectives of this work are twofold. First it would be interesting to show how the initial
representation learning step could be performed online. Secondly, beyond using learning progress to
discover controllable features during exploration, it would be interesting to re-use this knowledge to
acquire more abstract representations and skills.

2The semantic mapping between latent variables and external objects is made by the experimenter.

8

(a) Small exploration noise (� = 0.05) (b) Large exploration noise (� = 0.1)

Figure 4: Exploration ratio during exploration for different exploration noises.

Baselines Results obtained using IMGEPs with learned goal spaces are compared to two baselines:

• The first baseline is the naive approach of Random Parameter Exploration (RPE), where
exploration is performed by uniformly sampling parameterizations ✓. In the case of hard
exploration problems, this strategy is regarded as a low performing one, since no previous
information is leveraged to choose the next parameterization. This strategy gives a lower
bound on the expected performances of exploration algorithms.

• The second baseline is Modular Goal Exploration with Engineered Features Repre-

sentation (MGE-EFR): it corresponds to a modular IMGEP in which the goal space is
handcrafted and corresponds to the true degrees of freedom of the environment. In the
Arm-2-Balls environment it corresponds to the positions of the two balls, given as a point
in [�1, 1]4. Since essentially all the information is available to the agent under a highly
semantic form, it is expected to give an upper bound on the performances of the exploration
algorithms. We performed experiments with both one module (RGE-EFR) and two modules
(one for the ball and one for the distractor) (MGE-EFR).

4 Results

To assess the performances of the MGE algorithm on learned goal spaces, we experimented with
two different representations coming from two learning algorithms: �-VAE (disentangled) and VAE

(entangled). In each case, we ran 20 trials of 10,000 episodes each, for both the RGE and MGE

exploration algorithms. One episode is defined as one experimentation/roll-out of a parameter ✓.

Exploration performances The exploration performance of all the algorithms was measured
according to the number of cells reached by the ball in a discretized grid of 900 cells (30 cells for
each dimension of the ball that can be moved; the distractor is not accounted for in the exploration
evaluation). Not all cells can be reached given that the arm is rotating and is of unit length: the
maximum ratio between the number of reached cells and all the cells is approximately ⇡/4 ⇡ 0.8.

In Figure 4, we can see the evolution of the ratio of the number of cells visited with respect to all the
cells through exploration. First, one can see that all the algorithms have much better performances
than the naive RPE, both in term of speed of exploration and final performance. Secondly, for both
RGE and MGE with learned goal spaces, using a disentangled representation is beneficial. One can
also see that when the representation used as a goal space is disentangled, the modular architecture
(MGE-�VAE) performs much better than the flat architecture (RGE-�VAE), with performances
that match the modular architecture with engineered features (MGE-EFR). However, when the
representation is entangled, using a modular architecture is actually detrimental to the performances
since each module encodes then only partially for the ball position. Figure 4 also shows that the MGE

architectures with a disentangled representation performs particularly well even if the exploration
noise is low whereas the RGE architectures or MGE architectures with an entangled representation
relies on a large exploration noise to produce a large variety of observations. We cross-refer to
Appendix 6.7 for examples of exploration curves together with exploration scatters.

Benefits of disentanglement and modules

7

Hand-defined modular goal space

Learned modular goal space

Hand defined flat goal space

Random parameter exploration

Discovery of independantly controllable features
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imagine new goals 
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Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration
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Figure 1. LE2 Overview.

separated from the perceptual and motor systems has a long
history in Cognitive Science (Glenberg & Kaschak, 2002;
Zwaan & Madden, 2005). The transposition of the idea of
embodied language into intelligent systems (Steels, 2006)
was then applied to human-machine interaction (Dominey,
2005; Madden et al., 2010) and to semantic representations
(Silberer & Lapata, 2012). Recently, the BabyAI framework
was proposed as a platform to pursue Deep RL research in
grounded language (Chevalier-Boisvert et al., 2019).

In the domain of RL, the idea that natural language could
provide a guidance for an algorithm has recently gained in
popularity. In their review on RL algorithms informed by

natural language, Luketina et al. (2019) distinguish between
language-conditional problems where language is required
to solve the task and language-assisted problems where
language is a supplementary help. In the first category,
most works propose instruction-following agents (Bahdanau
et al., 2019; Jiang et al., 2019a; Goyal et al., 2019; R. K.
Branavan et al., 2010; Chen & Mooney, 2011). Although
our work might fall in the language-conditional category,
our system is never given any instruction. It builds its own
learning curriculum depending on its experience and learns
its own language model and reward function. Bahdanau
et al. (2019) also learns a reward function jointly with the
action policy but does so using a dataset of expert data
whereas our agent uses trajectories collected through its
own exploration. Lastly, Fu et al. (2019) uses an inverse
RL approach to learn a reward function, but requires known
environment dynamics.

Our work uses hindsight learning to reinterpret past experi-
ences collected while aiming at particular goals in the light
of new goals (potentially not yet discovered at the time of
experience collection). Hindsight Experience Replay (HER)

was first proposed in Andrychowicz et al. (2017) for continu-
ous sets of goals. For discrete sets of goals, Mankowitz et al.
(2018) proposed to substitute the original goal by another
uniformly sampled while Colas et al. (2019) used a bandit
maximizing learning progress. Cideron et al. (2019) trained
a model to generate a valid goal matching the transition,
while Jiang et al. (2019b) used an oracle system to generate
them. In our work, we use an internal reward function to
scan a set of candidate substitute goals.

The idea that an agent can formulate and imagine new goals
by composing language tokens derives from the systematic
generalization capabilities of grounded language models.
Systematic generalization (Hill et al., 2019; Bahdanau et al.,
2018) refers to an out-of-distribution kind of generalization
where testing examples follow the same rules of composi-
tion as the training ones. Recent works show that different
forms of generalization can emerge. For instance, Hill et al.
(2019) study models that can generalize over instructions
dealing with basic object concepts (color and shape) but
also over instructions referring to motor predicates such
as ‘put’ or ‘lift’. Similarly, Hermann et al. (2017) show
that grounded language learning agents can learn relational
object concepts like the notion of inter-object proximity.
Systematic generalization leverage factorized representa-
tions of the world. Objects for example can be described as
having types (e.g. table), color (red), size (small), material
(wood) etc. To better leverage this factorized representation,
we use DEEP SET neural architectures that directly encode
invariance to permutations in the order of the inputs (Za-
heer et al., 2017). We show that this can be used to make
reward functions and policies invariant to the permutations
of objects representations in the state vector, which enables
both fast learning and strong generalization compared to flat
representations.

https://arxiv.org/search/cs%3Fsearchtype=author&query=Lair%252C+N
https://arxiv.org/search/cs%3Fsearchtype=author&query=Colas%252C+C
https://arxiv.org/search/cs%3Fsearchtype=author&query=Portelas%252C+R
https://arxiv.org/search/cs%3Fsearchtype=author&query=Dussoux%252C+J
https://arxiv.org/search/cs%3Fsearchtype=author&query=Dominey%252C+P+F
https://arxiv.org/search/cs%3Fsearchtype=author&query=Oudeyer%252C+P
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also over instructions referring to motor predicates such
as ‘put’ or ‘lift’. Similarly, Hermann et al. (2017) show
that grounded language learning agents can learn relational
object concepts like the notion of inter-object proximity.
Systematic generalization leverage factorized representa-
tions of the world. Objects for example can be described as
having types (e.g. table), color (red), size (small), material
(wood) etc. To better leverage this factorized representation,
we use DEEP SET neural architectures that directly encode
invariance to permutations in the order of the inputs (Za-
heer et al., 2017). We show that this can be used to make
reward functions and policies invariant to the permutations
of objects representations in the state vector, which enables
both fast learning and strong generalization compared to flat
representations.

https://arxiv.org/search/cs%3Fsearchtype=author&query=Lair%252C+N
https://arxiv.org/search/cs%3Fsearchtype=author&query=Colas%252C+C
https://arxiv.org/search/cs%3Fsearchtype=author&query=Portelas%252C+R
https://arxiv.org/search/cs%3Fsearchtype=author&query=Dussoux%252C+J
https://arxiv.org/search/cs%3Fsearchtype=author&query=Dominey%252C+P+F
https://arxiv.org/search/cs%3Fsearchtype=author&query=Oudeyer%252C+P


Understanding sentences 
by learning a reward function that

predicts when it becomes true

Sentence

Predicts
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sentence is
true in that
situation

Learned
sentence 
embedding

è Can be used as an internal reward function to measure whether an internally
generated goal (= a sentence) is achieved by the goal-parameterized policy being learnt
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Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration
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Models of 
child development data



Self-organization of vocal development

(Moulin-Frier, Nguyen and Oudeyer, Frontiers in Cognitive Science, 2014)

A

B

C

DDIVA Vocal tract model (Guenther et al.)

Two-layers of LP—based intrinsically motivated learning:
1) Active choice self-exploration vs. imitation
2) If self-exploration: active goal selection

⇡✓
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Emergent developmental stages

(Oller, 2000)
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Moulin-Frier et al. Self-organization of early vocal development

FIGURE A2 | Developmental sequences emerging from the 9
simulations for the experiment described in section 3.1.
Each subplot follows the same convention as in Figure 7.
The simulations have been ordered, also in a subjective

manner, from those which display a clear developmental
sequence of the type No phonation → Unarticulated →
Articulated to those less organized (from left to right, then
top to bottom).

Frontiers in Psychology | Cognitive Science January 2014 | Volume 4 | Article 1006 | 20

Regularities and diversity
of individual developmental trajectories



Figure 2: Intrinsically Motivated Goal Exploration Process examplified.

• A cost function C : T ,O 7! R, internally used by the Meta-Policy. This cost function
outputs the fitness of an observation for a given task ⌧ .

When the environment is simple, such as for experiments presented in [15] where a robotic arm
explore its possible interactions with a single object, the structure of the goal space is not critical.
However, in more complex scenes with multiple objects (e.g. including tools or objects that cannot be
controlled), it was shown in [22] that it is important to have a goal space which reflects the structure
of the environment. In particular, having a modular goal space, i.e. of the form T =

LN
i=1 Ti,

where the Ti are different modules representing the properties of various objects, leads to much better
exploration performances. In that case a goal can correspond to achieving an observation where a
given object is in a given position.

The algorithmic architecture described in Figure 2 works as follows: at each step, the exploration
process samples a module, then samples a a goal in this module, observes the context, executes a
meta-policy mechanism to guess the best policy parameters for this goal, which it then uses to perform
the experiment. The observation is then compared to the goal, and used to update the meta-policy
(leveraging the information for other goals) as well as the module sampling policy. Depending on the
algorithmic instantiation of this architecture, different Meta-Policy mechanisms can be used [3, 22].
In any case, the Meta-Policy must be initialized using a buffer of experiments {ci, ✓i, oi} containing
at least two different oi. As such, a bootstrap of several Random Parameterization Exploration

iterations is always performed at the beginning. This leads to Algorithmic Architecture 1 . The reader
can refer to Appendix 6.1 for a detailed explanation of the Meta-Policy implementation.

In a modular architecture the goal sampling policy reads:

�(⌧) = �(⌧ |i)p(i), (1)

where p(i) is the probability to sample the Ti module, and �(⌧ |i) is the probability to sample the goal
⌧ given that the module i was selected. The strength of the modular architecture is that modules can
be selected using a curiosity-driven active module sampling scheme. In this scheme, �(⌧ |i) is fixed,
and p(i) is updated at time t according to:

p(i) := 0.9⇥ ⌥i(t)PN
k=1 ⌥k(t)

+ 0.1⇥ 1

N
, (2)

where ⌥i(t) is an interest measure based on the estimation of the average improvement of the
precision of the meta-policy for fulfilling goals in Ti, which is a form of learning progress called
competence progress (see [3] and Appendix 6.1 for further details on the interest measure). The
second term of Equation (2) forces the agent to explore a random module 10% of the time. The
general idea is that monitoring the learning progress allows the agent to concentrate on objects which
can be learned to control while ignoring objects that cannot.
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•AcostfunctionC:T,O7!R,internallyusedbytheMeta-Policy.Thiscostfunction
outputsthefitnessofanobservationforagiventask⌧.
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exploreitspossibleinteractionswithasingleobject,thestructureofthegoalspaceisnotcritical.
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Inanycase,theMeta-Policymustbeinitializedusingabufferofexperiments{ci,✓i,oi}containing
atleasttwodifferentoi.Assuch,abootstrapofseveralRandomParameterizationExploration

iterationsisalwaysperformedatthebeginning.ThisleadstoAlgorithmicArchitecture1.Thereader
canrefertoAppendix6.1foradetailedexplanationoftheMeta-Policyimplementation.

Inamodulararchitecturethegoalsamplingpolicyreads:

�(⌧)=�(⌧|i)p(i),(1)

wherep(i)istheprobabilitytosampletheTimodule,and�(⌧|i)istheprobabilitytosamplethegoal
⌧giventhatthemoduleiwasselected.Thestrengthofthemodulararchitectureisthatmodulescan
beselectedusingacuriosity-drivenactivemodulesamplingscheme.Inthisscheme,�(⌧|i)isfixed,
andp(i)isupdatedattimetaccordingto:
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N
,(2)

where⌥i(t)isaninterestmeasurebasedontheestimationoftheaverageimprovementofthe
precisionofthemeta-policyforfulfillinggoalsinTi,whichisaformoflearningprogresscalled
competenceprogress(see[3]andAppendix6.1forfurtherdetailsontheinterestmeasure).The
secondtermofEquation(2)forcestheagenttoexplorearandommodule10%ofthetime.The
generalideaisthatmonitoringthelearningprogressallowstheagenttoconcentrateonobjectswhich
canbelearnedtocontrolwhileignoringobjectsthatcannot.
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(Forestier and Oudeyer, CogSci 2017)

Curiosity-driven discovery of language
as a tool to manipulate the environment



Teacher algorithms for 
curriculum learning of Deep RL 

in continuously parameterized environments

Rémy Portelas1, Cédric Colas1, Katja Hofmann2, Pierre-Yves Oudeyer1

1Inria (FR)     2Microsoft Research (UK)
CoRL 2019



Learners                         

40

VS ...

(through procedural generation)
Continuous set of tasks/envs         



Methods - The CTS Framework 
(CTS: Continuous Teacher-Student)

● The teacher samples parameters mapping to distributions of 
tasks/envs
⇒ creates a curriculum where tasks/envs distributions 
evolve

● The Deep RL Student is a black-box
● The parameter space may contain:

○ unfeasible subspaces
○ irrelevant dimensions
○ non-linear difficulty

41



ALP-GMM: sample tasks/envs distributions 
that maximize absolute learning progress

42
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Example of mastered tasks after training

ALP-GMM + short DRL student

ALP-GMM + default DRL 
student

ALP-GMM + quadrupedal DRL student



Performance analysis on Hexagon Tracks
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ALP-GMM                                       Random 
Good generalization to diverse obstacles             Poor learning and generalization
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https://github.com/flowersteam/teachDeepRL

https://github.com/flowersteam/teachDeepRL


Applications in 
educational technologies
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Technologies for fostering
efficient learning and intrinsic motivation

KidLearn project: 
Personalization of teaching sequences 
(curriculum) in Intelligent Tutoring Systems
(Clement et al., Journal of Educational 
Data Mining, 2015; in prep.)

• Experiments with
> 1000 children in more than
30 schools in Aquitaine



ZPDES-CO algorithm: 
ALP + warm-start graph + final choice by child

Teacher algorithm
(ALP bandit)

Child

Recommendation
of exercises

Selected
exercise

Teacher algorithm
(ALP bandit)

Child

Recommendation
of exercises

Selected
exercise

Teacher algorithm
(ALP bandit)

(Clement et al., Journal of Educational Data Mining, 2015; in prep.)

score score
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the learning progress

Exercise Type:
• aiming at different KC;
• or presented in a different 

modality;

A1

A2
B1

A3
B2

C2

C1

B3

(Clement, Roy, Oudeyer and Lopes, 2015, Journal of Educational Data Mining)

ZPDES-CO algorithm
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Always a probability of 
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due to:
• individual characteristics
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Learning impact

ZPDES-CO 
algorithm

Oracle algorithm
(Pedagogical expert)



Motivational impact
during learning sessions
Intrinsic motivation score session S3 (IMI questionnaire)

ZPDES-CO algorithmOracle algorithm
(Pedagogical expert)



Take away

• Autonomous goal exploration 
• Driven by empirical learning progress measured at various scales

of time and space

Fundamental role of spontaneous developmental exploration

Scales to 
real world
(high-dimensions,
limited time,
distractors)

Organizes
developmental

trajectories
+ 

Enables discoveries
(tool use, language)

(Gottlieb and Oudeyer, Nature Rev. Neurosc., 2018.; Oudeyer et al., 2016; ) 

Can be used to guide
human edTech design
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Developmental autonomous learning



6.1. Introduction : Explorer dans l’Espace des Tâches 107

s’effectue via un nombre très élevé de dimensions correspondant à l’ensemble des degrés de liberté du
corps. Le fait que les systèmes moteurs de l’humain et du robot soient de dimensionnalité élevée et hau-
tement redondants, entraine généralement ce type de grande dissimilarité entre les dimensionnalités de
description des tâches considérées, et la dimensionnalité des espaces de contrôle associés. Dû à cette re-
dondance, les objectifs décrits dans un espace de tâches, comme la position de la main en trois dimensions,
peuvent typiquement être atteints via un grand nombre voire une infinité de trajectoires motrices. La Fig.
6.1 illustre une telle redondance, différentes possibilités de l’espace où sont effectuées les actions/espace
de contrôle mènent à un unique résultat dans l’espace des tâches considéré.

Figure 6.1 – Illustration du phénomène de redondance apparaissant typiquement lors de la description d’un
problème dans un espace des tâches mis en correspondance à un espace d’actions motrices. Ici, deux actions
différentes mènent au même état de l’espace des tâches.

6.1.2 Problématique 2 : L’Inhomogénéité des Espaces
Les différences pouvant exister lorsque l’on considère un espace de tâches lié à un espace d’actions

permettant d’agir sur celui-ci, ne se résument pas uniquement au niveau du nombre de dimensions relatives
à chaque espace. Outre la redondance, on retrouve fréquemment le fait qu’uniquement des régions très
réduites de l’espace des actions permettent d’effectuer un grand nombre de tâches intéressantes, alors
qu’un grand ensemble d’actions ne permettent d’en résoudre qu’un faible nombre, voire aucune. Nous
prendrons l’exemple d’un jeune enfant allongé sur le dos. Si nous considérons un espace de tâches relatif
au fait que celui-ci soit debout ou allongé, la question est alors de connaitre, parmi l’immensité de
l’espace des mouvements possibles, la quantité de ceux pouvant mener à ce qu’il se tienne debout. Il
semble alors possible que, si l’on demande à l’enfant d’effectuer un ensemble de mouvements aléatoires,
celui-ci ne parvienne jamais à se lever. L’espace lui permettant de se lever peut ainsi être considéré
comme une infime sous-partie de l’espace des mouvements possibles. De même, si l’on considère un
enfant essayant de ramper, parmi l’ensemble des motifs moteurs possibles, seule une quantité réduite de
comportements lui permettra de se déplacer de manière effective. Ces mouvements seront typiquement
ceux comportant certaines corrélations entre ceux de chaque membre. La majeure partie des autres
mouvements ne permettront à l’enfant que de se déplacer très peu. Cette particularité très importante
est donc relative à la définition même des espaces de tâches. Effectuer une quantité maximale de tâches
correspond alors en partie à rechercher les petites zones de l’espace des actions possibles permettant
d’effectuer effectivement ces tâches. Ce type d’espace est illustré Fig. 6.2, où un espace d’actions en 3
dimensions est proposé, dont une sous-partie très réduite (en bleu), permet d’effectuer un grand nombre
de tâches dans l’espace de tâches considéré.

6.1.3 Problématique 3 : Limites d’Atteintes Inconnues
Lors de la considération d’une exploration effectuée au niveau des tâches, un nouveau problème ap-

parait quant aux limites d’atteinte à l’intérieur de celui-ci. En effet, un robot, comme un enfant, ne peut
initialement connaitre les parties de l’espace qui sont atteignables, puisqu’il ne connait ni ses limites
d’apprentissage, ni ses limites physiques. De plus, certaines tâches peuvent ne devenir atteignables que
lorsque certaines compétences ont été préalablement acquises. Si nous prenons l’exemple de l’apprentis-
sage de la cinématique d’un bras lors d’une tâche d’atteinte, initialement le robot ne saura pas quelles

Figure 4: A robot can learn to walk just by exploring smartly a sensorimotor
space. In the experiment. a progress-driven kernel controls the movement of the
di�erent motors of a four-legged robot. For each motor, it chooses the period,
the phase and the amplitude of a sinusoidal signal. The prediction system tries
to predict the e�ect of the di�erent set of parameters in the way the image
captured by a camera placed on the robot’s head is modified. This indirectly
reflects the movement of its torso. At each iteration the kernel produces the
values for the next parameter set in order to maximize the reduction of the
prediction error.
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Why is (curiosity-driven) exploration of 
forward model less efficient than goal exploration? 

⇡✓ '• Redundancies
• Inhomogeneities

Forward model exploration: Knowing many ways to produce a few effects
Goal exploration: Knowing a few ways to produce many effects



Combining population-based and 
Deep-RL based IMGEPs

Population-based IMGEP
(fast discoveries, episodic
memory; 
Forestier et al., 2016)

Monolithic Deep RL 
IMGEP

(good generalization; Colas et 
al., 2019)
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Robotic experiment

‣ A 6-joint robotic arm evolves in an arena 
containing a (tennis) ball 

‣ The movement of the arm is parametrised by 
Dynamical Movement Primitives (DMPs)

Modular replay buffers

(Extension of Colas et al., GEP-PG: Decoupling exploration and exploitation in Deep RL, ICML 2018)

Unsupervised
modular goal space

learning
(Laversanne-Finot et 

al, 2018)



Curiosity applications
beyond video games and robots:

Automated scientific discovery



Oil-in-Water Droplets 
Self-Organization

Grizou et al. (2018) Exploration of Self-Propelling Droplets Using a Curiosity Driven Robotic
Assistant,  Arxiv/1904.12635, Cronin Lab, Univ. Glasgow.



Automatized robot experiments

61

• 8 experiments running in parallel
• Specialized and stationary working stations
• Oils and surfactant handled separately



Dropfactory



Intrinsically motivated goal exploration in a
continuous game of life

Discrete Game of Life

Continuous Game of Life
Lenia, Bert Chan (2018)

Reinke, C., Etcheverry, M., Oudeyer, P-Y. (in prep) Intrinsically Motivated Exploration for 
Automated Discovery of Patterns in Morphogenetic Systems



Random 
Experiments
(mostly dead 
or uniform patterns)

Under review as a conference paper at ICLR 2020

Random Exploration

Figure 27: Examples of identified patterns for the random exploration algorithm from the first repe-
tition of experiments.
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Intrinsically
Motivated
Goal Exploration

32% spatially
localized patterns
(« animals »)

Under review as a conference paper at ICLR 2020

IMGEP-OGL

Figure 31: Examples of identified patterns for the IMGEP-OGL algorithm from the first repetition
of experiments.
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Goal exploration process



Take away

• Autonomous goal exploration 
• Driven by empirical learning progress measured at various scales

of time and space

Fundamental role of spontaneous developmental exploration

Scales to 
real world
(high-dimensions,
limited time,
distractors)

Organizes
developmental

trajectories
+ 

Enables discoveries
(tool use, language)

(Gottlieb and Oudeyer, Nature Rev. Neurosc., 2018.; Oudeyer et al., 2016; ) 

Can be used to guide
human edTech design
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CURIOUS: intrinsically motivated
modular multi-goal Deep RL

Modular UVFA 
E.g. of modular goals:

Move gripper to (x,y,z)
Pickandplace cube2 at (x,y,z)
Push(cube1) at position (x,y)
Stack cube1 over cube3 … 

(Colas et al., to appear at ICML19)

Distractors

Controllable objects

Modular
replay buffer

LP-based
sampling of 

modules 
and goals

External world

with hinsight learning
(module and goal substitution)



Recovery following a sensory 
failure. 

CURIOUS recovers 95 % of its 
original performance twice as 

fast as M-UVFA+HER.

Competence Absolute Learning 
Progress

Selection Probabilities

Forgetting due to 
interferences among
modules/goals

Mitigated thanks to 
LP-based re-
exploration

Deep RL based IMGEPs (Curious) vs. Population-based IMGEPs:
+ better generalization

- Slower initial discoveries



Modeling overlapping waves of tool use development

  

Computational models of 
intrinsic motivations

● Object of Intrinsic Motivation:

– Actions

– Goals

– Spaces

– Strategies
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B. Experimental setup
We designed a robotic setup where a 2D simulated arm

can grasp two sticks that can be used to move some of the
out-of-reach objects (see Fig.2). The different items in the
scene and their interactions are described in the next sections.

Planar arm

Stick

Magnet
Joints

Handle

HookLoop
Static objects

Magnetic objects HookLoop objects

Gripper

cat

dog

1.5 1.0 0.5 0.0 0.5 1.0 1.5 X

0.0

0.5

1.0

1.5

Y

Fig. 2. A possible state of the environment.

1) Robotic Arm: The 2D robotic arm has 3 joints plus a
gripper located at the end of the arm. Each joint can rotate
from �⇡ rad to ⇡ rad around its resting position, mapped to
a standard interval of [�1, 1]. The length of the 3 segments
of the arm are 0.5, 0.3 and 0.2 so the length of the arm is
1 unit. The resting position of the arm is vertical with joints
at 0 rad and its base is fixed at position (0, 0). The gripper
g has 2 possible positions: open (g � 0) and closed (g < 0)
and its resting position is open (with g = 0). The robotic arm
has 4 degrees of freedom represented by a vector in [�1, 1]4.
A trajectory of the arm is represented as a sequence vectors.

2) Motor Control: We use Dynamical Movement Primi-
tives [26] to control the arm’s movement as this framework
allows the production of a diversity of arm’s trajectories
with few parameters. Each of the 4 arm’s degrees-of-freedom
(DOF) is controlled by a DMP starting at the resting position
of the joint. Each DMP is parameterized by one weight on
each of 2 basis functions and one weight specifying the
end position of the movement. The weights are bounded in
the interval [�1, 1] and allow each joint to fairly cover the
interval [�1, 1] during the movement. Each DMP outputs
a series of 50 positions that represents a sampling of the
trajectory of one joint during the movement. The arm’s
movement is thus parameterized with 12 weights, represented
by the motor space M = [�1, 1]12.

3) Objects and Tools: Two sticks can be grasped by
the handle side (orange side) in order to catch an out-of-
reach object. The sticks have length 0.5 and are located at
positions (�0.75, 0.25) and (0.75, 0.25) as in Fig. 2. One
stick has a magnet on the end and can catch magnetic objects
(represented in blue), and the other stick has a hook-and-loop
tape to catch another type of objects (objects represented
in green). If the gripper is closed near the handle of one
stick (closer than 0.25), this stick is considered grasped and
follows the gripper’s position and the orientation of the arm’s

last segment until the gripper opens. In some conditions,
we add environmental noise as a gaussian noise of standard
deviation 0.1 added to the (normally equal to 0) angle
between the stick and the arm’s last segment, different at
each of the 50 movement’s steps. If the other side of one stick
reaches (within 0.25) a matching object (magnetic or hook-
and-loop), the object will then follow the end of the stick.
Three magnetic objects are located at positions (�0.3, 1.1),
(�1.2, 1.5) and (�1., 1.5), so that only one is reachable
with the magnetic stick. Three hook-and-loop objects are
located at positions (0.3, 1.1), (1., 1.5) and (1.2, 1.5), so that
only one is reachable with the hook-and-loop stick. Also,
two animals walk randomly following a gaussian noise of
standard deviation 0.01 on X and Y dimensions added at
each of the 50 steps of a trial. Finally, four static black
squares have also no interaction with other objects. The arm,
tools and other objects are reset to their initial state at the
end of each iteration.

4) Sensory Feedback: At the end of the movement, the
robot gets sensory feedback representing the trajectory of
the different items of the environment during the arm’s
movement. This feedback is composed by the position of
each item at 3 time points: at steps 17, 33, and 50 during
the movement of 50 steps. First, the trajectory of the gripper
is represented as a sequence of X and Y positions and
aperture (1 or �1) of the gripper (SHand, 9D). Similarly,
the trajectories of the end points of the sticks are sequences
of X and Y positions (SStick1 and SStick2 , 6D each). Also,
the trajectory of each object is a sequence of X and Y po-
sitions: SObject with Object 2 { Magnetic1, Magnetic2,
Magnetic3, HookLoop1, HookLoop2, HookLoop3, Cat,
Dog, Static1, Static2, Static3, Static4}. Those spaces are
all in 6 dimensions ([�1.5, 1.5]6). The total sensory space S
has 93 dimensions and corresponds to 15 items.

C. Exploitation Architectures
An exploitation architecture generates an inverse model of

the environment based on a database of previously explored
motor commands and their associated sensory feedback. In
this paper, we are both interested in the quality of the
exploration databases and in comparing the inverse models
built by different combinations of exploration database and
exploitation architectures. We evaluate the accuracy of the
resulting inverse models to reach points in two spaces of
interest, SMagnetic1 and SHookLoop1 . Indeed, those spaces
represent the only objects that can be moved by one of the
sticks as they are not static and not out-of-reach. One set of
goals is randomly drawn in the 2D subspace corresponding
to the final position of each of the two interesting objects
(1000 goals in each).

We define two exploitation architectures generating in-
verse models: one based on the Nearest Neighbor algorithm
(NN, Algo. 7), and one based on the Locally Weighted
Linear Regression forward model and an optimization-based
inverse model (LWLR, Algo. 8). Given a goal sg (e.g.
sg = (0.5, 0.5), the final position of the reachable magnetic
object), the NN algorithm looks into the explored database,

(a) RmB (b) F-NN-RGB (c) M-NN-RMB (d) M-NN-AMB

Fig. 3. Position of the two reachable and movable objects at the end of each of the 100000 iterations, for one trial of some exploration architecture.
Blue points: position of reachable magnetic object. Green points: reachable hook-and-loop object.

Fig. 4. Interest of modules along the 100000 iterations, with exploration
architecture M-NN-AMB. We show the interest of modules exploring the
spaces of the hand, magnetic stick, reachable magnetic object and the cat.

bination of exploration and exploitation architectures. Table
II provides the median distance between goals and reached
sensory points for each condition (for 2000 points times 100
trials). In the following, we give results of non-parametric
statistical Mann-Whitney U tests for pairs of conditions.

Firstly, both if we consider conditions with environmental
noise or not, all databases generated by flat exploration
architectures and tested by any of the two exploitation
architectures show a larger competence error than any of
the databases explored with modular architectures and tested
with both exploitation architecture (p < 10�100). For in-
stance, without environmental noise, the best performing flat
condition is F-LWLR-RGB exploited with the NN algorithm,
with a median competence error of 0.123, whereas the worst
performing modular condition is M-NN-RMB, exploited
with the LWLR algorithm, with an error of 0.050.

Secondly, considering only exploration conditions without
environmental noise, all databases generated with RMB
architectures and tested with any of the two exploitation
architectures show a larger competence error than any of
the databases generated with AMB and tested with both ex-
ploitation architectures (p < 0.05). For instance, the median
competence error using RMB and the NN algorithm both in

TABLE II
COMPETENCE ERROR IN SPACES OF INTEREST

Exploration
architecture

Env.
Noise NN LWLR

RmB
No 0.185 0.711
Yes 0.307 0.871

F-NN-RGB
No 0.745 1.018
Yes 1.174 1.253

F-LWLR-RGB
No 0.123 0.171
Yes 0.376 0.422

M-NN-RMB
No 0.046 0.050
Yes 0.248 0.261

M-NN-AMB
No 0.035 0.037
Yes 0.285 0.300

M-LWLR-RMB
No 0.038 0.039
Yes 0.216 0.227

M-LWLR-AMB
No 0.026 0.026
Yes 0.215 0.226

exploration and exploitation is 0.046 whereas with AMB it
is 0.035. Using LWLR, those errors are 0.039 and 0.026.

IV. DISCUSSION

We have introduced two new algorithmic architectures for
incremental exploration of sensorimotor spaces, exploiting
a modular representation of these spaces. Random Model
Babbling selects randomly which model to explore (which
is itself explored through goal babbling) and Active Model
Babbling (MACOB) uses a multi-armed bandit algorithm to
maximize empirical learning progress. In a simulation in-
volving structured continuous high-dimensional motor (12D)
and sensory (93D) spaces, we showed that these modular
architectures were vastly more efficient than goal babbling
methods used with flat representations, for all combinations
of inverse models in the exploration and exploitation archi-
tectures. In particular, by focusing exploration on relevant
parts of the space, modular architectures allowed the learner
to discover efficiently how to move various objects using
various tools, while flat architectures were not able to dis-
cover large parts of the space of effects. We also showed that
active model babbling was significantly more efficient than
random model babbling, yet the difference was smaller than
between modular and flat architectures.

(Forestier and Oudeyer, CogSci, 2016; ICDL-Epirob, 2016)

(Siegler et al., 1996)
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Self-organization of culturally
shared speech sounds

Models of the formation of speech sound systems in populations of 
individuals (de Boer,2001; Oudeyer, 2006/19;  Moulin-Frier et al., 2011)



Future research: learning to 
represent experiments



(Frontiers in Neuroscience, 2014; ICDL-Epirob 2014; 
See also Scientific Reports, 2016; PNAS, 2017; Nature Reviews
Neuroscience, in press)
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I. INTRODUCTION

Curiosity is a key element of human development, driving us to explore spontaneously novel objects, activities and environ-
ments [1]. Curiosity-driven exploration strategies permit us to interact, learn and evolve quickly in an open ended world. It is
thus an important challenge to understand the fundamental mechanisms of spontaneous exploration and curiosity in humans.

One of the first experiments on this topic was made by Harlow, where monkeys played with simple 2D puzzles to highlight
the relation between complexity, motivation and learning [2]. Another early example is McReynolds et al. who created the
”curiosity box” where identical boxes, with different toys inside, are presented to young children [3]. Recently, an experiment
was made with infants to study action selection guided by intrinsic motivations with a mechatronic board. In this study, subjects
have to learn the relation between actions on pushbuttons and the opening of boxes [4]. They showed significant differences in
exploration strategy (sensorimotor vs a more learning directed exploration) between three and four years old infants. Despite
a number of other psychology and neuroscience experiments in humans and monkeys, we still know little about the precise
mechanisms of curiosity [1].

Many computational models of curiosity have been elaborated [1], [5]. Some of these models specifically targeted the
modeling of curiosity and its role in human sensorimotor and cognitive development, showing how it can generate automatically
behavioral and cognitive developmental structures sharing interesting similarities with infant development [6], [7]. These lines of
work allowed to identify the wide diversity of potential mechanisms that could be at play to drive spontaneous exploration [8].
We focus here on the intrinsic motivation mechanisms driving exploration, i.e. the processes allowing an agent to choose itself
goals when freely involved in a task.

Novel hypotheseses have been formulated such that curiosity-driven sensorimotor exploration could be organized as to
maximize learning progress [9], [10], which is different from more classical hypothesis conceptualizing curiosity as a drive to
maximize uncertainty of novelty. Yet, experimental setups designed so far in the literature do not allow to separate between
these hypotheses. A major research challenge is thus to design experimental setups which could allow to confirm or invalidate
individual hypotheses. Furthermore, it is important to note that intrinsic motivation mechanisms could be influenced when
asked to behave according to a specific protocol. This will be discussed in details when describing our experimental setup.

Here, we make a step in this direction by presenting an exploratory study with humans designed to analyze and measure
properties of curiosity-driven exploration of a priori unknown sensorimotor spaces. More specifically, we are interested in the
relation between exploration and learning progress.

II. EXPERIMENTAL SETUP

Fig. 1. a) Subjects are exploring how to control an ellipsis displayed on the screen in front of them by moving their body joints tracked by a Kinect device.
b) Details of the interface shown to the user on a screen in front of them: in particular, you can see the controlled ellipsis (in red) and the target one (in
brown).

This experimental setup is designed as a game setting human subjects into an intrinsically motivated activity [11]. Participants
can freely explore and shift between several games, each being about finding a mapping between their movements (body joints

Baranes et al. Intrinsically motivated exploration

FIGURE 1 | Task design. (A) Individual game. The subjects pressed a key to intercept a stream of moving dots (arrow) as they crossed the screen center.
(B–D) Selection screens in the 7-game, 64-game, and 64N-game versions.

play a minimum of 70 games and a minimum of 20 min. This dual
requirement was meant to prevent a strategy of simply minimiz-
ing time on the task by selecting only the shortest games. Beyond
these basic requirements, there were no additional constraints,
and the instructions emphasized that the payment for the session
was fixed and entirely independent of the game performance or
the chosen games.

At the end of the sessions testing the 64-game version we con-
ducted an additional procedure, administered without warning,
to determine whether the subjects monitored their progress in the
task. After a subject completed the session, we selected 5 games
that the subject had played at least twice and which spanned the
range of difficulties that he/she had sampled. We asked the sub-
ject to play each game once more and then asked him/her to
rate (1) how much they estimate that their performance changed
over the repetitions of the game, and (2) how much do they
believe they could improve if they had five more tries. In each
case the subjects gave their rating on a scale ranging from −5
(a large decrease in performance) to +5 (a large improvement in
performance).

DATA ANALYSIS
For the analyses in Figures 1–6 the unit of analysis was one sub-
ject; we obtained the appropriate measure for one subject and
then pooled across the sample. To generate the colormaps in
Figures 3A,B, we divided each subject’s first 70 games into a
sliding window of 2 games stepped by 1 game throughout the

FIGURE 2 | General performance. (A) Performance as a function of speed
in the 3 versions. Each bin represents the average and standard error
(s.e.m.) of the fraction correct for the corresponding dot speed across all
the subjects tested. (B) The distribution of performance levels in the
7-game condition. The points show the average and s.e.m. (across
subjects) of the number of games in each of 6 performance bins.

session, computed the subject’s distribution of selected speeds
and fraction correct in each bin, and then computed the averages
across subjects. To examine the performance-dependent choice
strategy (Figure 5), we assigned each game that a subject played
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FIGURE 4 | Range of selected games. (A) Distribution of the
selected speeds (top) and fraction correct (bottom) across an entire
session. The values show the mean and s.e.m. across subjects.
(B) Choices of individual subjects. Each line represents one subject

and shows the maximum, minimum and average dot speed selected
by that subject. Subjects are ordered according to the task version
(or task combination) that they performed, and in chronological order
within a task group.

FIGURE 5 | Local strategy for game selection. Each point shows
the average and s.e.m. of the probability to repeat, increase or
decrease difficulty as a function of prior game performance.

Solid colored traces show the empirical data, dotted black traces
show the results of simulations using a random game selection
strategy.
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Combining population-based and 
Deep-RL based IMGEPs

Population-based IMGEP
(fast discoveries, episodic
memory; 
Forestier et al., 2016)

Monolithic Deep RL 
IMGEP

(good generalization; Colas et 
al., 2019)
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Robotic experiment

‣ A 6-joint robotic arm evolves in an arena 
containing a (tennis) ball 

‣ The movement of the arm is parametrised by 
Dynamical Movement Primitives (DMPs)

Modular replay buffers

(Extension of Colas et al., GEP-PG: Decoupling exploration and exploitation in Deep RL, ICML 2018)

Unsupervised
modular goal space

learning
(Laversanne-Finot et 

al, 2018)



è Focus on modeling spontaneous curiosity-driven exploraition in humans
èUnderstanding how it can be made to work for acquisition of motor skills in 

high-dimensional real world (robotic) bodies (Developmental robotics)
èUnderstanding how it links with developmental organization

Related to various research lines

Varela, Maturana
(autopoïesis, 1974)

Oudeyer, Kaplan et al.
(2003)

Theoretical biology
and cognitive modeling

Schmidhuber
(LP based RL, 1991)

Fedorov et al.
(active learning, 
Optimal exp. 
Design, 1972)

Barto, Singh et al.
(IMRL, 2004)

Andreae et al.
(novelty search
with RL, 1978)

Theoretical machine 
learning and RL

Evolutionary
computing

Stanley et al., 
2008; Mouret, 
Doncieux et al.
(novelty search
with GA/ES)

Psychology (1940-60)
(Berlyne, White, Kaga, Festinger, …)



Back to human experiments



How spontaneous exploration is 
structured during free play

(Baranes, Oudeyer and Gottlieb, 2014
Frontiers in Neuroscience)
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FIGURE 1 | Task design. (A) Individual game. The subjects pressed a key to intercept a stream of moving dots (arrow) as they crossed the screen center.
(B–D) Selection screens in the 7-game, 64-game, and 64N-game versions.

play a minimum of 70 games and a minimum of 20 min. This dual
requirement was meant to prevent a strategy of simply minimiz-
ing time on the task by selecting only the shortest games. Beyond
these basic requirements, there were no additional constraints,
and the instructions emphasized that the payment for the session
was fixed and entirely independent of the game performance or
the chosen games.

At the end of the sessions testing the 64-game version we con-
ducted an additional procedure, administered without warning,
to determine whether the subjects monitored their progress in the
task. After a subject completed the session, we selected 5 games
that the subject had played at least twice and which spanned the
range of difficulties that he/she had sampled. We asked the sub-
ject to play each game once more and then asked him/her to
rate (1) how much they estimate that their performance changed
over the repetitions of the game, and (2) how much do they
believe they could improve if they had five more tries. In each
case the subjects gave their rating on a scale ranging from −5
(a large decrease in performance) to +5 (a large improvement in
performance).

DATA ANALYSIS
For the analyses in Figures 1–6 the unit of analysis was one sub-
ject; we obtained the appropriate measure for one subject and
then pooled across the sample. To generate the colormaps in
Figures 3A,B, we divided each subject’s first 70 games into a
sliding window of 2 games stepped by 1 game throughout the

FIGURE 2 | General performance. (A) Performance as a function of speed
in the 3 versions. Each bin represents the average and standard error
(s.e.m.) of the fraction correct for the corresponding dot speed across all
the subjects tested. (B) The distribution of performance levels in the
7-game condition. The points show the average and s.e.m. (across
subjects) of the number of games in each of 6 performance bins.

session, computed the subject’s distribution of selected speeds
and fraction correct in each bin, and then computed the averages
across subjects. To examine the performance-dependent choice
strategy (Figure 5), we assigned each game that a subject played

www.frontiersin.org October 2014 | Volume 8 | Article 317 | 3

• Exploration follows a growth in 
complexity actively controlled
as predicted by models

• Factors influence exploration 
patterns: task difficulty, novelty, 
size of the choice space

Baranes et al. Intrinsically motivated exploration

FIGURE 3 | Selection and performance in the 3 task versions. (A)
Evolution of the selected speed during a session. Each colormap indicates
the probability of selection of a given speed, measured across all subjects in
a sliding window over the session. The bottom panel shows the average dot

speed in each time bin (average and s.e.m. from the corresponding
colormaps). (B) Evolution of performance during a session. Same as in (A),
except that the grayscale indicates the probability of playing at a given
fraction correct in each time bin.

to one of 6 performance bins (e.g., fractions correct of 0–0.167,
0.168–0.33, etc.), computed the fraction of the following games
that were an increase, repeat or decrease in dot speed relative to
the previous game, and finally computed the average and standard
error of the mean (s.e.m.) across subjects. For the simulations
(dotted lines in Figure 5), we simulated a set of 300 subjects who
selected the game difficulty randomly on each trial. After the vir-
tual subject chose a game, that game was assigned a performance
(fraction correct) that was randomly selected (with replacement)
from the set of values that were generated by the real subjects
for the corresponding dot speed. We then computed the selec-
tion rate per subject and mean and s.e.m. across the simulated
subjects, as for the real data set. In the analysis of subjective rat-
ings (Figure 7) the unit of analysis is one game. For each of the 5
games tested for each subject, we measured the objective improve-
ment (the slope of a linear regression of the % correct across
game repetitions), and pooled the data across all subjects and
games.

RESULTS
GENERAL PERFORMANCE
We describe the data from 23, 19, and 22 subjects who com-
pleted, respectively, the 7-game, 64-game, and 64N versions. Most
subjects completed only one version, while 12 subjects com-
pleted the 7 and the 64-game versions, and one subject completed
the 64 and 64N versions. We discarded the data from a sin-
gle subject who selected a single (fast) dot speed throughout
the entire session, suggesting that he was trying to minimize
time on the task. For the remaining subjects, we verified that
they followed the dot speed rather than indiscriminately press-
ing the bar by comparing the average rate of key presses to the
average rate of dot crossings across games of moderate speed
that could be reasonably followed (<45◦/s). The two rates were
equivalent and highly correlated (linear regression slope 0.896 ±
0.05 (average and s.e.m.), p < 0.05 in 93% of subjects), show-
ing that the subjects adjusted their presses to the sequence
of dots.
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FIGURE 4 | Range of selected games. (A) Distribution of the
selected speeds (top) and fraction correct (bottom) across an entire
session. The values show the mean and s.e.m. across subjects.
(B) Choices of individual subjects. Each line represents one subject

and shows the maximum, minimum and average dot speed selected
by that subject. Subjects are ordered according to the task version
(or task combination) that they performed, and in chronological order
within a task group.

FIGURE 5 | Local strategy for game selection. Each point shows
the average and s.e.m. of the probability to repeat, increase or
decrease difficulty as a function of prior game performance.

Solid colored traces show the empirical data, dotted black traces
show the results of simulations using a random game selection
strategy.
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Figure 5.21 – Comparaison des performances de l’algorithme IAC avec deux différentes versions de RIAC (avec
et sans l’approche multi-résolution du monitoring des progrès en apprentissage), ainsi qu’une exploration aléatoire.
Les moyennes et écart-types sont calculés après 30 expérimentations.

5.5 L’Expérience Main-Œil-Nuage

Dans cette partie, nous présentons une expérience différente, contenant un espace sensorimoteur plus
complexe que celui présenté précédemment. Nous considérons ici un système robotisé à 6 dimensions dont
la particularité est d’inclure de très larges zones qui ne sont pas apprenables, en proportion à l’espace
effectivement apprenable.

5.5.1 Configuration du Robot

Dans cette expérience, nous considérons un système en simulation présenté Fig. 5.22. Celui-ci com-
prend un robot muni de deux bras, chacun étant composé de deux membres et de deux articulations dont
les valeurs angulaires sont directement contrôlées par les entrées motrices (q11, q12, q21, q22) (un contrôleur
asservissant directement la position angulaire souhaitée). Sur l’extrémité du bras droit est attachée une
caméra de forme carrée capable de détecter la position sensorielle (x, y) d’un point, dans le référentiel de
ce même carré. Ces points observés peuvent correspondre soit à l’extrémité de l’autre bras (appelé main),
soit aux nuages dans le ciel (voir Fig. 5.22). Cela signifie que, quand le bras droit est positionné tel que
la caméra regarde les nuages, qui se déplacent de manière aléatoire, la relation entre les configurations
motrices et la perception est quasi-aléatoire. Si, au contraire, les bras sont positionnés de sorte que la
caméra observe l’extrémité de l’autre bras, alors se produira une relation sensorimotrice qui peut être
apprise.

Formellement, le système dans sa globalité peut être représenté par la relation suivante :

(x, y) = E(q11, q12, q21, q22) (5.12)

où (x, y) est calculée de la manière suivante :

1. La caméra est placée au dessus du mur blanc : rien n’est détecté, (x, y) = (�10, �10) ;

2. La caméra est au dessus de l’extrémité du bras gauche (la main) : la valeur (x, y) de la position
relative de l’extrémité du bras dans le référentiel de la caméra est mesurée. Etant donnée la taille
de la matrice observée par la caméra, qui est de 6 unités, les valeurs x et y sont ici dans l’intervalle
[0; 6] ⇥ [0; 6] ;

3. La caméra regarde par la fenêtre (les nuages) : deux valeurs aléatoires (x, y) qui jouent le rôle de
nuages qui se déplacent aléatoirement sont choisies en tant que valeurs de sortie. L’intervalle de ces
valeurs correspond aussi à celui de la caméra. Elle est donc de [0; 6] ⇥ [0; 6] ;
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(1) Robots are useful
to better conceptualize
the impact of the body 

The example of walking



Morphology and self-organization 
of biped locomotion

Tad McGeer (McGeer, 1990), Nagoya Univ. (2005)



Morphological computation

(Ceccato et Cazalets, 
2009)

The Acroban humanoid (Ly, Lapeyre, Oudeyer, 2011, IROS)

• Collaboration with
Labri/Univ. Bordeaux 
I

• Collaboration with J-
R. Cazalets, 
Integrative
Neuroscience 
Institute, Bordeaux





Body: 
morphology, synergies and self-organization

(Ceccato et Cazalets, 
2009)
Neuroscience,
Univ. Bordeaux.

A human-like bended leg shape reduces the 
motion amplitude on the upper body by 
45% and increases the head stability by 30% 
(Humanoids 2013; IROS 2013)

Study of properties of various feet, including 
passive spring loaded articulations

(Humanoids 2014) 90



From affordances to vocal 
interaction

Playground Experiments

• Autonomous learning of novel affordances and 
and skills, e.g. object manipulation

• Self-organization of developmental trajectories, 
bootstrapping of communication

• Automatic formation of internal distinctive 
concepts for « self » vs « objects » vs « others »

• Regularities/diversity

èNew hypotheses for understanding information 
seeking and curiosity in infant development

(Oudeyer et al., 2007 IEEE TEC)
(Kaplan and Oudeyer, Front. Neuroscience, 

2007)
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SUPPLEMENTARY DATA

4.1 VOCALIZATION TYPES

Figure 14 shows the 9 types of vocalizations defined in section 2.1.3 (NN, CN, NC, VN, NV, VV, VC, CV and CC).
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Figure 14. Examples of each vocalization types. Rows (1st) correspond to the type of the first phone and columns (2nd) to the type of the second phone of

the vocalization. There are three possible phone types, as defined in section 2.1.3: the Vowels (V) which have a high intensity (I > 0.9), the Consonants (C)

which have a low intensity (0.1 < I < 0.9) and the None which have almost no intensity (I < 0.1). For example, the plot in the second row (C) third column

(V) corresponds to a CV vocalization, with the same convention as in Figure 4.
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⌧ = {s(t), a(t), . . . , s(t+�t)}
Trajectory:

Behavioural descriptors over full trajectory
(can be cost function measuring achievement of a complex property)

' = ['1(⌧),'2(⌧), . . . ,'i(⌧)]

(Oudeyer and Kaplan, 2007)

Vector of params of 
Bezier curve fitting
traj. of obj. A

Mean speed 
of object C
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events
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over traj.
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4 Experiments: Exploration and Learning in a Robotic Tool Use Setup

In order to benchmark different learning algorithms in a complex realistic environment with continu-
ous policy and outcome spaces, we designed a real robotic setup composed of a humanoid arm in front
of joysticks that can be used as tools to act on other objects. We show the running experimental setup
in this video2. The code is available open-source together with the 3D shapes of printed objects3.

4.1 Robotic Setup

The robotic setup has two platforms: in the first one, a Poppy Torso robot (the learning agent) is
mounted in front of two joysticks (see Fig. 2). In the second platform, a Poppy Ergo robot (seen as a
robotic toy) is controlled by the right joystick and can push a ball that controls some lights and sounds.
Poppy is a robust and accessible open-source 3D printed robotic platform [Lapeyre et al., 2014].

Figure 2: Robotic setup. Left: a Poppy Torso robot (the learning agent) is mounted in front of two joysticks.
Right: full setup: a Poppy Ergo robot (seen as a robotic toy) is controlled by the right joystick and can hit a
tennis ball in the arena which changes some lights and sounds.

Robotic Arm The left arm has 4 joints. The position of those joints at time t is defined by the
action at. Their bounds are defined so that the arm has a low probability to self-collide but can still
reach a large volume, even on the left, top and behind the left shoulder to some extent. We use
the framework of Dynamical Movement Primitives [Ijspeert et al., 2013] to generate smooth joint
trajectories given a set of motor parameters. Each of the 4 joints is controlled by a DMP starting at
the rest position of the joint (position 0) and parameterized by 8 weights: one weight on each of 7
basis functions and one weight representing the end position of the joint trajectory (see Appendix
B). Given ✓ (32 parameters between ´1 and 1) provided by the agent, the DMPs generates a policy
roll-out by outputting a smooth 30-steps trajectory tat0 , . . . , atendu for the joints of the arm that once
executed will translate into a 3D trajectory of the robotic hand for 5s. After producing each roll-out,
the arm goes back in a rest position.

Tools and Toys Two analogical joysticks (Ultrastick 360) can be reached by the left arm and moved
in any direction. The 2D position of the joysticks (left-right and backward-forward axes) controls
the Poppy Ergo robotic toy as follows. The left joystick does not control any variable. The Ergo
robot has 6 motors, and moves with hardwired synergies that allow control of rotational speed and
extension. The right joystick left-right axis controls in speed the rotation of the Ergo robot around the
center of the second platform, which means that pushing the right joystick to the right with a small
angle will move the Ergo towards the right with a small speed, and pushing the joystick with a higher
angle will increase Ergo’s rotational speed. The Ergo rotation angle is bounded in r´⇡; ⇡s, and is
reset to 0 every 40 iterations. The right joystick backward-forward axis controls the extension of
the Ergo: if the joystick is in rest position, the Ergo stays in rest position. When the right joystick
is moved forward, then the Ergo extends away from the center, using 3 of the 6 motors, and comes
back when the joystick is released. A yellow tennis ball is freely moving in the blue arena which is
slightly sloped so that the ball always comes close to the center at the end of a movement. The ball is

2Video of the experimental setup: https://youtu.be/NOLAwD4ZTW0 Please note that in the current experi-
ments we swapped the joysticks and changed the light and sound mappings.

3Open-source code: https://github.com/ymollard/APEX
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(Forestier et al., 2017)

Action = 32D 
(32 

continuous
parameters
of a DMP) 

Trajectory
of ball: 30 
continuous

features Perception = 
Trajectory of all 

objects: 310 
continuous
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dimensions

MACOB: Modular population-based IMGEPs


