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• 65 research units (jointly with other institutions) 
• 2250 agents and a community of 7000 French researchers 

• Over 1500 publications/year, 50% in co-publication with partners
ECOBIO Ecology, biodiversity and  
functioning of continental ecosystems

OCEANS Oceans, Climate and Resources 

SAS Health and Societies 

SOC Societies and globalisation 

DISCO Internal dynamics and continents surface

Why you shouldn’t trust today’s skin cancer (free) apps for 
diagnosing melanoma
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1. You cannot trust the findings: Studies indicate that skin cancer apps have poor diagnostic accuracy for 
melanoma. When patients do a self-examination of the skin, reported sensitivity (correctly identified) 
may increase from 25% to 93% and specificity (correctly identified as not ) ranges from 83% to 97%
Conclusion: it’s better to trust your own findings than those of an app.

2. Apps don’t pick up every symptom
Without specialist input, apps may not recognize rare or unusual cancers. ➚false negatives +false sense of security.

3. Photographs don’t show and tell
When screening for skin cancer, dermatologists take special dermoscopic images of the skin, using a dermatoscope. 
Dermoscopic images can unveil e.g. blue-white pigmentation or asymmetries that suggest melanoma. These clues can hardly 
be seen in photos (clinical images) alone.These apps use standard photos taken with a smartphone camera.

4. No compliance with medical regulations
Researchers say that skin cancer apps vary in quality and that some have not been tested properly to show that they work and 
are safe5. In the US, the app needs to be cleared by the FDA.

5. Apps can cause anxiety
As skin cancer apps have a moderate-to-high sensitivity but only moderate specificity, they might increase the risk of 
unnecessary removal of pigmented skin lesions and create more dermatologist visit➞ harmful and expensive to society.

https://www.barco.com/en/news/2019-05-23-skin-cancer-apps-for-diagnosing-melanoma

January 23rd 2020

https://www.medicalnewstoday.com/articles/285751.php

Machine Learning and Interpretability: why bother ?
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Model misuse,  
Model ethics,  
Model bias, 
Model regulatory requirements  
Model trust  
Model understanding 
… 

« I think you should be more 
explicit here in step two. »



Why making AIs fair, accountable and transparent is crucial 
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https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial

In October 2017, lawsuit of American teachers with their school district ➞ 
computer program that assessed their performance. 

The system rated teachers in Houston by comparing their students’ test 
scores against state averages.  
high ratings ➞ won praise and even bonuses. poor ratings➞ faced the sack. 

No way of checking if the program was fair or faulty: the company that built 
the software, the SAS Institute, regards its algorithm a trade secret and would 
not disclose its workings. 

A federal judge ruled that use of the EVAAS (Educational Value Added 
Assessment System) program may violate their civil rights.  

➞ the school district paid the teachers’ fees & stop using the software.

The need for Explainable Artificial Intelligence (XAI) 
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https://www.darpa.mil/program/explainable-artificial-intelligence

The Explainable AI (XAI) program aims to create a suite of machine learning techniques that:

• Produce more explainable models, while maintaining a high level of learning performance 
(prediction accuracy); and

• Enable human users to understand, appropriately trust, and effectively manage the 
emerging generation of artificially intelligent partners.

Why did you do that? 
Why not something else? 
When do you succeed? 
When do you fail? 
When can I trust you? 
How do I correct an error?

XAI Concept 
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https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.xpowerpoint.com/explainable-artificial-intelligence-xai-darpa--PPT.html

Première vue: utilisons les boites noires pour ce qu’elles sont…
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tions ongoing in their cores, which can last 

for hundreds of millions to many billions 

of years, depending on their mass. When 

such a star exhausts the hydrogen fuel in 

its core, it expands enormously, shatters any 

close-enough planet, and becomes a white 

dwarf. Thereafter, what remains of the 

planetary system may move close enough to 

the star to become subject to collisions and 

to strong tidal forces, grinding the remain-

ing planetary cores (3). This leaves behind 

a shroud of rocky debris of various sizes, 

ranging from micrometer-sized dust parti-

cles to kilometer-sized bodies (4, 5). In some 

cases, because of the high temperature and 

strong irradiation present in proximity of a 

white dwarf, these rocks release metal-rich 

gas, giving rise to a disk of gas and debris 

surrounding the white dwarf. The presence 

of circumstellar gas is indicated by metal 

emission lines in the stellar spectrum (6).

Only a few white dwarfs are known to 

host a gas disk, and the rocky body detected 

by Manser et al. orbits one of those. Because 

of the chaotic motion present in the disk 

surrounding 20 to 25% of white dwarfs (also 

known as “polluted” white dwarfs), there is 

a continuous infall of rocky, planetary mate-

rial onto the stellar surface, which reveals 

itself through the presence of metal absorp-

tion lines in the stellar spectrum (7, 8). This 

accretion of rocky material is continuous 

because the strong stellar gravity brings any 

metal lying on the surface into the inner 

layers within a very short time scale (7, 9). 

Therefore, by analyzing the metal absorp-

tion and emission lines in the spectrum of a 

polluted white dwarf, it is possible to iden-

tify the composition of the circumstellar gas 

and/or rocks forming the disk (2). The study 

of Manser et al. also concluded that the den-

sity of the planetesimal should be between 

7.7 and 39 g/cm3, which is compatible with 

that of pure iron and of Earth’s core. It is 

therefore plausible that the planetesimal is 

the remnant core of a shattered planet.

Theoretical models of the orbital evolu-

tion of planetary systems indicate that pos-

sibly large (a few to hundreds of kilometers 

in diameter), rocky bodies might survive the 

last stages of stellar evolution toward the 

white dwarf phase (10, 11). Furthermore, the 

existence of numerous polluted white dwarfs 

indicates that planetesimals indeed orbit 

around these stars. However, planetesimals 

orbiting white dwarfs have been directly 

found in just one case using the Kepler space 

telescope and the transit method (12), despite 

the large number of polluted white dwarfs 

discovered to date, the fact that white dwarfs 

are the descendant of almost all planet hosts 

known to date, and that their small size facili-

tates the detection of transiting bodies.

The method of Manser et al. has revealed 

the presence of planetesimals without the 

need for the particular orbital geometry that 

is required by the transit method. It could 

therefore be used to identify the presence of 

planetesimals orbiting other polluted white 

dwarfs and advance the study of the plane-

tary systems evolution. Furthermore, because 

planetesimals orbiting white dwarfs are be-

lieved to be the remnant cores of shattered 

planets, studying the spectra of polluted 

white dwarfs known to be surrounded by 

planetesimals enables one to gain informa-

tion about the chemical composition and 

metal abundances of the infalling material—

that is, planetary cores (13). This kind of char-

acterization is not possible for bodies in the 

solar system, including Earth.

Because of their small size, white dwarfs 

are faint. The discovery of Manser et al. 

required observations conducted with the 

10.4-m Gran Telescopio Canarias in La 

Palma, Spain, which is one of the largest 

in the world. Future similar discoveries 

will therefore require high-efficiency in-

struments and large telescopes. The range 

of extremely large telescopes in Chile and 

Hawaii, currently under construction or 

planned, will have primary mirrors that are 

30 to 40 m in diameter. This should be the 

ideal platform for finding more planetesi-

mals orbiting white dwarfs and exploring 

the innermost regions of planets.        j
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In defense of 
the black box
Black box algorithms 
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By Elizabeth A. Holm

T
he science fiction writer Douglas 

Adams imagined the greatest com-

puter ever built, Deep Thought, 

programmed to answer the deep-

est question ever asked: the Great 

Question of Life, the Universe, and 

Everything. After 7.5 million years of pro-

cessing, Deep Thought revealed its answer: 

Forty-two (1). As artificial intelligence (AI) 

systems enter every sector of human en-

deavor—including science, engineering, 

and health—humanity is confronted by the 

same conundrum that Adams encapsulated 

so succinctly: What good is knowing the 

answer when it is unclear why it is the an-

swer? What good is a black box?

In an informal survey of my colleagues 

in the physical sciences and engineering, 

the top reason for not using AI methods 

such as deep learning, voiced by a substan-

tial majority, was that they did not know 

how to interpret the results. This is an im-

portant objection, with implications that 

range from practical to ethical to legal (2). 

The goal of scientists and the responsibil-

ity of engineers is not just to predict what 

happens but to understand why it hap-

pens. Both an engineer and an AI system 

may learn to predict whether a bridge will 

collapse. But only the engineer can explain 

that decision in terms of physical models 

that can be communicated to and evalu-

ated by others. Whose bridge would you 

rather cross?

Scientists and engineers are not alone in 

their skepticism of black box answers. The 

European Union General Data Protection 

Regulation (GDPR), introduced in 2018, 

guarantees subjects “meaningful informa-

tion about the logic involved” in automatic 

decision-making based on their personal 

data (3). The legal interpretation of this 

regulation is under debate, but the mis-

trust of inexplicable systems is evident in 

the statute.
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“…by analyzing…the 
spectrum of a polluted 
white dwarf, it is possible to 
identify the composition of 
the circumstellar gas and/or 
rocks forming the disk.”
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tions ongoing in their cores, which can last 

for hundreds of millions to many billions 

of years, depending on their mass. When 

such a star exhausts the hydrogen fuel in 

its core, it expands enormously, shatters any 

close-enough planet, and becomes a white 
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of Manser et al. also concluded that the den-

sity of the planetesimal should be between 

7.7 and 39 g/cm3, which is compatible with 

that of pure iron and of Earth’s core. It is 

therefore plausible that the planetesimal is 

the remnant core of a shattered planet.

Theoretical models of the orbital evolu-

tion of planetary systems indicate that pos-

sibly large (a few to hundreds of kilometers 

in diameter), rocky bodies might survive the 

last stages of stellar evolution toward the 

white dwarf phase (10, 11). Furthermore, the 

existence of numerous polluted white dwarfs 

indicates that planetesimals indeed orbit 

around these stars. However, planetesimals 

orbiting white dwarfs have been directly 

found in just one case using the Kepler space 

telescope and the transit method (12), despite 

the large number of polluted white dwarfs 

discovered to date, the fact that white dwarfs 

are the descendant of almost all planet hosts 

known to date, and that their small size facili-

tates the detection of transiting bodies.

The method of Manser et al. has revealed 

the presence of planetesimals without the 

need for the particular orbital geometry that 

is required by the transit method. It could 

therefore be used to identify the presence of 

planetesimals orbiting other polluted white 

dwarfs and advance the study of the plane-

tary systems evolution. Furthermore, because 

planetesimals orbiting white dwarfs are be-

lieved to be the remnant cores of shattered 

planets, studying the spectra of polluted 

white dwarfs known to be surrounded by 

planetesimals enables one to gain informa-

tion about the chemical composition and 

metal abundances of the infalling material—

that is, planetary cores (13). This kind of char-

acterization is not possible for bodies in the 

solar system, including Earth.

Because of their small size, white dwarfs 

are faint. The discovery of Manser et al. 

required observations conducted with the 

10.4-m Gran Telescopio Canarias in La 

Palma, Spain, which is one of the largest 

in the world. Future similar discoveries 

will therefore require high-efficiency in-

struments and large telescopes. The range 

of extremely large telescopes in Chile and 

Hawaii, currently under construction or 

planned, will have primary mirrors that are 

30 to 40 m in diameter. This should be the 

ideal platform for finding more planetesi-

mals orbiting white dwarfs and exploring 

the innermost regions of planets.        j
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portant objection, with implications that 

range from practical to ethical to legal (2). 

The goal of scientists and the responsibil-

ity of engineers is not just to predict what 

happens but to understand why it hap-

pens. Both an engineer and an AI system 

may learn to predict whether a bridge will 

collapse. But only the engineer can explain 

that decision in terms of physical models 

that can be communicated to and evalu-

ated by others. Whose bridge would you 

rather cross?

Scientists and engineers are not alone in 

their skepticism of black box answers. The 

European Union General Data Protection 

Regulation (GDPR), introduced in 2018, 

guarantees subjects “meaningful informa-

tion about the logic involved” in automatic 

decision-making based on their personal 

data (3). The legal interpretation of this 

regulation is under debate, but the mis-
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tions ongoing in their cores, which can last 

for hundreds of millions to many billions 

of years, depending on their mass. When 

such a star exhausts the hydrogen fuel in 

its core, it expands enormously, shatters any 

close-enough planet, and becomes a white 

dwarf. Thereafter, what remains of the 

planetary system may move close enough to 

the star to become subject to collisions and 

to strong tidal forces, grinding the remain-

ing planetary cores (3). This leaves behind 

a shroud of rocky debris of various sizes, 

ranging from micrometer-sized dust parti-

cles to kilometer-sized bodies (4, 5). In some 

cases, because of the high temperature and 

strong irradiation present in proximity of a 

white dwarf, these rocks release metal-rich 

gas, giving rise to a disk of gas and debris 

surrounding the white dwarf. The presence 

of circumstellar gas is indicated by metal 

emission lines in the stellar spectrum (6).

Only a few white dwarfs are known to 

host a gas disk, and the rocky body detected 

by Manser et al. orbits one of those. Because 

of the chaotic motion present in the disk 

surrounding 20 to 25% of white dwarfs (also 

known as “polluted” white dwarfs), there is 

a continuous infall of rocky, planetary mate-

rial onto the stellar surface, which reveals 

itself through the presence of metal absorp-

tion lines in the stellar spectrum (7, 8). This 

accretion of rocky material is continuous 

because the strong stellar gravity brings any 

metal lying on the surface into the inner 

layers within a very short time scale (7, 9). 

Therefore, by analyzing the metal absorp-

tion and emission lines in the spectrum of a 

polluted white dwarf, it is possible to iden-

tify the composition of the circumstellar gas 

and/or rocks forming the disk (2). The study 

of Manser et al. also concluded that the den-

sity of the planetesimal should be between 

7.7 and 39 g/cm3, which is compatible with 

that of pure iron and of Earth’s core. It is 

therefore plausible that the planetesimal is 

the remnant core of a shattered planet.

Theoretical models of the orbital evolu-

tion of planetary systems indicate that pos-

sibly large (a few to hundreds of kilometers 

in diameter), rocky bodies might survive the 

last stages of stellar evolution toward the 

white dwarf phase (10, 11). Furthermore, the 

existence of numerous polluted white dwarfs 

indicates that planetesimals indeed orbit 

around these stars. However, planetesimals 

orbiting white dwarfs have been directly 

found in just one case using the Kepler space 

telescope and the transit method (12), despite 

the large number of polluted white dwarfs 

discovered to date, the fact that white dwarfs 

are the descendant of almost all planet hosts 

known to date, and that their small size facili-

tates the detection of transiting bodies.

The method of Manser et al. has revealed 

the presence of planetesimals without the 

need for the particular orbital geometry that 

is required by the transit method. It could 

therefore be used to identify the presence of 

planetesimals orbiting other polluted white 

dwarfs and advance the study of the plane-

tary systems evolution. Furthermore, because 

planetesimals orbiting white dwarfs are be-

lieved to be the remnant cores of shattered 

planets, studying the spectra of polluted 

white dwarfs known to be surrounded by 

planetesimals enables one to gain informa-

tion about the chemical composition and 

metal abundances of the infalling material—

that is, planetary cores (13). This kind of char-

acterization is not possible for bodies in the 

solar system, including Earth.

Because of their small size, white dwarfs 

are faint. The discovery of Manser et al. 

required observations conducted with the 

10.4-m Gran Telescopio Canarias in La 

Palma, Spain, which is one of the largest 

in the world. Future similar discoveries 

will therefore require high-efficiency in-

struments and large telescopes. The range 

of extremely large telescopes in Chile and 

Hawaii, currently under construction or 

planned, will have primary mirrors that are 

30 to 40 m in diameter. This should be the 

ideal platform for finding more planetesi-

mals orbiting white dwarfs and exploring 

the innermost regions of planets.        j
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Nous ne pouvons pas utiliser les boîtes noires en IA pour 
trouver des liens de causalité, ou de compréhension. 

Cette tache est pour l’intelligence humaine et l'IA 
interprétable.  

Mais acceptons les boîte noires en ce qu’elles fournissent 
une valeur prédictive, qu’elles fournissent d’excellents 
résultats et …

Rétinopathie diabétique



Deuxième vue: n’utilisons pas les boites noires 
pour la santé et la justice !
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There has been an increasing trend in healthcare and criminal 
justice to leverage machine learning (ML) for high-stakes pre-
diction applications that deeply impact human lives. Many of 

the ML models are black boxes that do not explain their predictions 
in a way that humans can understand. The lack of transparency and 
accountability of predictive models can have (and has already had) 
severe consequences; there have been cases of people incorrectly 
denied parole1, poor bail decisions leading to the release of dan-
gerous criminals, ML-based pollution models stating that highly 
polluted air was safe to breathe2 and generally poor use of limited 
valuable resources in criminal justice, medicine, energy reliability, 
finance and in other domains3.

Rather than trying to create models that are inherently interpre-
table, there has been a recent explosion of work on ‘explainable ML’, 
where a second (post hoc) model is created to explain the first black 
box model. This is problematic. Explanations are often not reliable, 
and can be misleading, as we discuss below. If we instead use models 
that are inherently interpretable, they provide their own explana-
tions, which are faithful to what the model actually computes.

In what follows, we discuss the problems with explainable ML, fol-
lowed by the challenges in interpretable ML. This document is mainly 
relevant to high-stakes decision making and troubleshooting models, 
which are the main two reasons one might require an interpretable 
or explainable model. Interpretability is a domain-specific notion4–7, 
so there cannot be an all-purpose definition. Usually, however, an 
interpretable machine learning model is constrained in model form 
so that it is either useful to someone, or obeys structural knowledge 
of the domain, such as monotonicity (for example, ref. 8), causality, 
structural (generative) constraints, additivity9 or physical constraints 
that come from domain knowledge. Interpretable models could use 
case-based reasoning for complex domains. Often for structured 
data, sparsity is a useful measure of interpretability, because humans 
can handle at most 7 ± 2 cognitive entities at once10,11. Sparse models 
allow a view of how variables interact jointly rather than individually. 
We will discuss several forms of interpretable machine ML models 
for different applications, but there can never be a single definition; 
for example, in some domains sparsity is useful, and in others it is 

not. There is a spectrum between fully transparent models (where we 
understand how all the variables are jointly related to each other) and 
models that are lightly constrained in model form (such as models 
that are forced to increase as one of the variables increases, or models 
that, all else being equal, prefer variables that domain experts have 
identified as important; see ref. 12).

A preliminary version of this manuscript appeared at a work-
shop, entitled ‘Please stop explaining black box machine learning 
models for high stakes decisions’13.

Key issues with explainable ML
A black box model could be either (1) a function that is too com-
plicated for any human to comprehend or (2) a function that is 
proprietary (Supplementary Section A). Deep learning models, 
for instance, tend to be black boxes of the first kind because they 
are highly recursive. As the term is presently used in its most com-
mon form, an explanation is a separate model that is supposed to 
replicate most of the behaviour of a black box (for example, ‘the 
black box says that people who have been delinquent on current 
credit are more likely to default on a new loan’). Note that the term 
‘explanation’ here refers to an understanding of how a model works, 
as opposed to an explanation of how the world works. The termi-
nology ‘explanation’ will be discussed later; it is misleading. I am 
concerned that the field of interpretability/explainability/compre-
hensibility/transparency in ML has strayed away from the needs 
of real problems. This field dates back to the early 1990s at least  
(see refs. 4,14), and there are a huge number of papers on interpre-
table ML in various fields (that often do not have the word ‘interpre-
table’ or ‘explainable’ in the title, as recent papers do). Recent work 
on the explainability of black boxes—rather than the interpretability 
of models—contains and perpetuates critical misconceptions that 
have generally gone unnoticed, but that can have a lasting negative 
impact on the widespread use of ML models in society. Let us spend 
some time discussing this before discussing possible solutions.

It is a myth that there is necessarily a trade-off between accuracy 
and interpretability. There is a widespread belief that more complex 

Stop explaining black box machine learning 
models for high stakes decisions and use 
interpretable models instead
Cynthia Rudin! !

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box 
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward 
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and 
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where 
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.
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Prise de décisions à enjeux élevés santé, justice pénale, etc. 
La voie à suivre est de concevoir des modèles qui sont intrinsèquement interprétables

Today: understanding the SOA and issues
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IV.		 Machine	Learning	interpretable	trois	approches		

V.	 Deux	exemples	de	modèles	interprétables		

VI.	 Conclusion
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IA et médecine… une longue  histoire

Le système expert MYCIN (1970) Watson for Oncology (2013)

IA : compréhension/perception/décision

expert 
maladies 

Médeci

méningi

antibiotiq



…mais l’IA et les données massives 
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Intelligence Artificielle : compréhension/perception/décision

Apprentissage Automatique
Apprentissage Profond

… transforme la médecine… c’est déjà presque une vielle nouvelle !

14

Obermeyer, Z. & Emanuel, E.J., 2016. Predicting the Future — Big Data, Machine Learning, and Clinical Medicine.  
New England Journal of Medicine, 375(13), pp.1216–1219.

3 predictions in 2016 on Machine Learning as a  
disruptive technology for Medicine in the next few years.

• First, ML will dramatically improve prognosis. We can precisely identify 
large patient subgroups with mortality rates approaching 100% and others 
with rates as low as 10%.  
prediction ➞ come into use in the next 5 years.  

• Second, ML will displace much of the work of radiologists and 
anatomical pathologists. Algorithms will also monitor and interpret 
streaming physiological data, replacing aspects of anesthesiology and 
critical care.  
prediction ➞ disruptions is within next years, not decades.  

• Third, ML will improve diagnostic accuracy.  
Obstacles: a) gold standard for diagnosis unclear ➞ harder to train 
algorithms. b) high-value EHR data are often stored in unstructured formats 
c) models need to be built and validated individually for each diagnosis. 

   prediction ➞ to develop, over the next decade.

Classification des cancer de la peau du niveau d’un 
expert dermatologue (Nature,2017)
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A. Esteva, et al., “Dermatologist-level classification of skin cancer with deep neural networks,” 
Nature, 2017.

1 million de paramètres

pré-entrainé avec 1.2  
millions d’images et 757 classes

Les performances des « IA » dépassent régulièrement celles 
des radiologues et anatho-pathologistes  (2016-2019)

Caveat
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diagnostiquer les cancers du sein mieux que les radiologues  
(Nan Wu, et al. 2019).  Trained and evaluated on over 200,000 
exams (over 1,000,000 images).  AUC of 0.895/

diagnostiquer la rétinopathie diabétique comme les 
ophtalmologistes (Gulshan,JAMA,2016.) 128 000 images



Des systèmes basés sur une collaboration homme-
machine peuvent faire mieux que l’IA seule…
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Deep Learning Drops Error Rate for Breast 
Cancer Diagnoses by 85% 

JAMA, vol. 318, no. 22, pp. 2199–2210, 
Dec. 2017.

https://siecledigital.fr/2018/10/15/une-ia-by-google-detecte-le-cancer-

avec-une-precision-de-99/

The explosion of medical imaging data creates an environment 
ideal for machine-learning and data-based science (1/2)
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Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical 
imaging that enables data to be extracted and applied within clinical-decision support systems (CDSS) to 
improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. 

S. Röhrich,“Machine learning: from radiomics to discovery and routine,” 2018.

The explosion of medical imaging data creates an environment 
ideal for machine-learning and data-based science (2/2)
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Clinical Decision 
Support-System 

P. Lambin, et al., “Radiomics: the bridge between medical imaging 
and personalized medicine,” Nature, 14(12), 2017.

L’approbation des usages médicaux de l’IA est en marche… 
forte des performances en prédiction…
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E. J. Topol, “High-performance medicine: the convergence of human and 
artificial intelligence,” Nat Med, pp. 1–13, Jan. 2019.
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Pour chaque personne qu'ils aident (bleu), les dix médicaments les plus 
lucratifs aux États-Unis ne parviennent pas à améliorer  

les conditions d’entre 3 et 24 personnes (rouge).

Schork, N.J., 2015. Personalized medicine: time for one-person trials. Nature.

Malgré ses succès la médecine reste « imprécise »… 

Emergence de la médecine de précision… 
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➞ fournir les meilleurs soins disponibles à chaque patient, 
sur la base d'une stratification en sous-classes de maladies 
présentant une base biologique commune.

Shaikh et al., “Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 1: From Methodology to Clinical 
Implementation,” JACR, 2018.
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… et la fin de la médecine « one-size-fit all »

➞ la bonne intervention au bon patient au bon moment.



Médecine personnalisée vs. de précision

Médecine personnalisée ➞ dédié à 1 patient 

Médecine de précision ➞ stratification fine des patients 

Médecine ciblée ➞ spécifique à une cible thérap. 

Médecine translationelle ➞ boucle R&D : Bed2Bench2Bed 
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Feldman, A. M. (2015). Bench-to-Bedside; Clinical and Translational Research; 
Personalized Medicine; Precision Medicine-What's in a Name? Clinical and 
Translational Science, 8(3), 171–173. http://doi.org/10.1111/cts.12302

Médecine de précision pour le cancer
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https://pct.mdanderson.org/

Other chronic disease are strongly multi-factorial : 
Cardio-metabolic diseases (CMD)
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Overweight = BMI > 25 and Obesity = BMI > 30 (BMI=Weight/Height^2) 

Obesity is a chronic disease of pandemic evolution ➞ increased risk of many pathologies 
(cardiometabolic) pathologies (dyslipidemias, T2 diabetes, arterial hypertension) and 
articular depression and many cancers. 

World Prevalence of overweight or obese is 37% for men and 38% for women.  

In France, 2012 overweight or obese ~ half of population (Obese 15%~6.9 millions).  

In Africa, diabetes (5.7% of the adult population in Africa is now affected) and 
cardiovascular diseases kill more than AIDS. 

 How to improve treatments ?    

Médecine de précision pour le diabète

28
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J. Merino and J. C. Florez, “Precision medicine in diabetes: an opportunity for clinical translation,” Ann. N.Y. Acad. Sci., 
vol. 1411, no. 1, pp. 140–152, Jan. 2018.



On détermine les meilleures options thérapeutiques en fonction des 
caractéristiques biologiques et génétiques d’une personne. 
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Adapté de G. Giudice and E. Petsalaki, “Proteomics and phosphoproteomics in precision medicine: applications and challenges,” Brief 
Bioinformatics, vol. 1, no. 2, pp. 129–12, Oct. 2017.

ECG EEG

SCAN RADIO

RadiOmics

Metagenomics

Médecine de précision et apprentissage automatique
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clustering

classification
? prédiction

Les données « Omics » permettent de nous caractériser très 
finement, nous et… nos hôtes. 

31JDZucker

Analyser nos propre cellules Analyser nos bactéries

F. S. MD, et al., “Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 1: From 
Methodology to Clinical Implementation,” Journal of the American College of Radiology, 2018

icrobiote	intes?nal	humain	:		
un	organe	oublié

Du bébé "stérile" à la naissance ➞  2 kg de micro-organismes,  
sur les 100 billions de cellules du corps humain, seule 1 sur 10 est humaine.

l'"éducation"	des	défenses	immunitaires	innées
Système	immunitaire

production	de	vitamines	
dégradation	des	aliments	
extraction	énergétique	

Métabolisme

90 % microbes

10 % human cells
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100 fois 
plus



La	plupart	des	micro-organismes	sont	inconnus	et	non	cultivables…
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Faecalibacterium	prausnitzii Ruminococcus		spp		 Clostridium	difficile		
en	caecum	sourisPhotos	UEPSD

Bacteroides	dorei	 Escherichia	coli	Bactéries	ancrées	dans	
une	Plaque	de	Peyer,			
Intestin	de	souris

A	Powerful	Microscope	to	Scan	the	
neglected	organEhrlich SD ©

Quantification	de	notre	microbiome
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Quantification	de	notre	microbiome	(vision	simple)

Bactéries Nombre

100000

40000
20000
30000
30000100-400 € 

Vers une médecine de précision des maladies intégrant la  
métagénomique.
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class	1 class	2Cirrhose	du	foie non	cirrhotique

Signature géniques impliquant plusieurs  
gènes bactériens parmi des millions…
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For the classification tasks there are metagenomic datasets from the 
ExperimentHub 



State	of	the	art:	RF/SVM	or	linear	models
37

(Pasolli et al., 2016)

T. H. Nguyen, Y. Chevaleyre, E. Prifti, N. Sokolovska, and J.-D. Zucker, “Deep Learning for 
Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks,” 2017.
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Results	with	synthetic	images

Results	with	1D	data

E.	Pasolli,	D.	T.	Truong,	F.	Malik,	L.	Waldron	&	N.	Segata;	“Machine	Learning	Meta-analysis	of	Large	Metagenomic	Datasets:	Tools	and	
Biological	Insights”;	PLoS	Comput”.	Biol.	12,	p.	e1004	977	(2016)

Phylogenetic 
ordering

Random ordering

Met2Img	(Thanh-Hai	et	al.	2018)	outperforms	MetAML	
[Pasolli,	2016]	for	5	out	of	6	datasets

Precision medicine directed at the microbiota could 
inform physicians about prognosis and therapy.

39
JDZucker

One could view the microbiota as a treasure trove for next-generation medicine, 
and tapping into this network may produce new therapeutic insights. 

Jobin, C. (2018). Precision 
medicine using microbiota. 
Science, 359(6371), 32–34.
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RGPD et modèles interprétables : droit et confiance

● Règlements de l'UE (Règlement général sur la protection des données (GDPR) en 
vigueur le 25 mai 2018) sur la prise de décision algorithmique et un "droit 
d’explication".
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Vanthienen, et al. Performance of classification models from a user perspective. Decision Support Systems 51, 782- 793,(2011). 

Goodman, B. & Flaxman, S. R. European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation". AI magazine, 2017

● Une explication de la prédiction est désirée par médecins et patients lorsque un 
modèle doit être validé avant d'être déployé en routine➞ confiance

A. Vellido,  et al., “Machine learning in critical care: state-of-
the-art and a sepsis case study,” BMEO,2018.

erreur pas (trop) grave… erreur gravissime…

Equité/Fairness : l’IA est biaisée par les données 
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Une étude récente a révélé que certains programmes de reconnaissance faciale 
classent incorrectement moins de 1 % des hommes à la peau claire, mais plus 
d'un tiers des femmes à la peau foncée. 


Que se passe-t-il lorsque l'on se fie à de tels algorithmes pour diagnostiquer le 
mélanome sur une peau claire ou foncée… ?

Un programme apprends à partir des données 
qu’on lui donne et qui peuvent être … biaisées 

Les « aversarials attacks » sont maintenant connues, mais..
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J. Su, et al. “One pixel attack for fooling deep neural networks.,” CoRR, 2017.

Akhtar & Mian, “Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey,” arXiv.org, 02-Jan-2018.

…se  pose la problème de la « responsabilité » des algorithmes 
… notamment en cas d’attaques d’images médicales.
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Qui est responsable en cas d’erreur ?

Finlayson, et al., “Adversarial Attacks Against 
Medical Deep Learning Systems.,” arXiv, 2018.



Interpretability vs Predictive power
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« Intrinsically » interpretable

predictive

sparse linear models

Concise decision trees

SVM XGBoost

KNN

Adapted from Defense Advanced Research Projects Agency. Broad Agency 
Announcement, Explainable Artificial Intelligence (XAI), DARPA-
BAA-16-53 (DARPA, 2016); https://www.darpa.mil/attachments/DARPA-
BAA-16-53.pdf 

Intrepretability/Accuracy and Usage
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A Data Science Playbook for xAI - Navigating Interpretable and Predictive Models Josh Poduska, 
Chief Data Scientist, Domino Data Lab 
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The PDR Framework : 3 desiderata should be 
used to select interpretation methods
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W. J. Murdoch, C. Singh, K. K. P. O. the, 2019, “Definitions, methods, and 
applications in interpretable machine learning,” PNAS

.

Predictive accuracy : the quality of a model’s fit measured 
with test-set accuracy (the data used to check for predictive 
accuracy must resemble the population of interest, distribution 
of predictions matters,…) 

Descriptive accuracy: the degree to which an interpretation 
method objectively captures the relationships learned by 
machine-learning models.  

Relevancy : an interpretation that provides insight for a 
particular audience into a chosen domain problem 



Interpretability in Machine Learning concepts 
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Predictive and Descriptive accuracy

Impact of interpretability methods on 
descriptive and predictive accuracies.

W. J. Murdoch, C. Singh, K. K. P. O. the, 2019, “Definitions, methods, and applications in interpretable machine learning,” National Acad Sciences
.

Interpretability in Machine Learning

Type A - Interpreting black-box models 

What was learned and is hidden in the model ? 
  

Type B - Interpreting predictions from black-box models 

Why this individual has been classified this way ?  

Type  C - Learning interpretable models  
 

How do we intrinsically explain the model ?  
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Post-Hoc 
Model

Post-Hoc 
Prediction

Intrinsic

Interpretability in Machine Learning

Type A - Interpreting black-box models 

Looking into the black box 
Model distillation (soft DT) 

Type B - Interpreting predictions from black-box models 

Attribution methods: e.g. LIME 

Type  C - Learning interpretable models  
Decision tree, Rules, linear model, scoring model, … 51
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“Why Should I Trust You?” 
Explaining the Predictions 
of Any Classifier  
[Ribeiro et al. ’16]  

[Olah, distill.pub]  

[ Frosst&Hinton,17]

Looking into the black box: A detail view of an activation atlas from 
one of the layers of the InceptionV1 vision classification network.
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It reveals many of the visual detectors that the network uses to classify 
images, such as different types of fruit-like textures, honeycomb patterns and 

fabric-like textures.

https://ai.googleblog.com/2019/03/exploring-neural-networks.html



Model Distillation: Principles 
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Student = Soft Decision Tree➞ for explaining a particular classification decision on a particular test case  

Student = Smaller Network➞ for improving the performance of deep learning models on mobile devices

A Soft Decision Tree
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Basic Tree. Each data-point travels through 
the tree until one of the leafs. The path is 
determined by the split conditions, which 
are functions of the features. The leafs 
determine the prediction target.

Soft Decision Tree. Each data point does 
not have a unique path through the tree. 
They now belong to every leaf of the tree, 
with a certain probability, i.e. the path 
probability

https://github.com/ronvree/SoftDecisionTrees

The distillation approach: back to the softmax 
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JDZuckerhttp://www.adeveloperdiary.com/data-science/deep-learning/neural-network-with-softmax-in-python/

In practice, the model will output « green » but cannot say like ‘red’ is much closer 
to ‘green’.This is because the target output class will have high probability and all 

other classes will have probability closer to zero

Detecting the « dark knowledge »
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https://medium.com/analytics-vidhya/knowledge-distillation-dark-knowledge-of-neural-network-9c1dfb418e6a

https://medium.com/@ahmdtaha/distilling-the-knowledge-in-a-neural-network-77b7232bb631

To extract this dark knowledge we used ensemble of models in practice. So we turned into knowledge 
distillation where a complex model (Teacher model) will be used to distill its knowledge to the small 

model (Student model) .The student model can be as complex as teacher model or lesser.  
In practice we use less complex model as student model.



57
JDZucker

[ Frosst and Hinton]

Distilling a Neural Network Into a Soft Decision Tree

A type of soft decision tree that generalizes better than one learned directly from the training data of NMIST

The images at the inner nodes are the learned filters
The images at the leaves are visualizations of the learned 
probability distribution over classes
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It reaches a test accuracy of 96.76% which is about halfway 
between the neural net and the soft decision tree trained 

directly on the data.

https://medium.com/razorthink-ai/distilling-a-neural-network-into-a-soft-decision-tree-1d1818dc1c4f

The soft decision tree trained improves accuracy

Interpretability in Machine Learning

Type A - Interpreting black-box models 

Model distillation (soft DT) 
Looking into the black box 

Type B - Interpreting predictions from black-box models 
Activation Maps 
Attribution methods: e.g. LIME 
Feature relationships  
Feature importance scores 

Type  C - Learning interpretable models  
Decision tree, Rules, linear model, scoring model, … 59
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“Why Should I Trust You?” 
Explaining the Predictions 
of Any Classifier  
[Ribeiro et al. ’16]  

[Olah, distill.pub]  

[ Frosst&Hinton,17]

Interpretability in Machine Learning

Type B - Interpreting predictions from black-box models 

Classification of the methods: 

Global (whole dataset) vs. Local (one instance) methods 

Model-Agnostic (any learner) or Model-specific methods 
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Class Activation maps :  
localy interpretable & Model-specific Explanations

JDZucker

The red region represents the area of the 
image on which the network focuses to class

 InceptionV3 model.

https://edebrouwer.github.io/deeplearning/carvision/visualization/neural/
networks/learning/2017/08/09/Deep_Visualization.html

Allows to spot the region where neurons are particularly 
activated when fed with a specific input image.

https://jacobgil.github.io/deeplearning/class-activation-maps

« Attention Maps » for medicine: Single retinal fundus image and 
different classes predicted (age,gender, smoking, HbA1C, BMI) 
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The top left image is a sample retinal image in colour from the UK Biobank dataset. 
The remaining images show the same retinal image, but in black and white.

LIME :  
Local Interpretable Model-agnostic Explanations
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Le graphique représente les zones possibles de prédiction en rouge et bleue, la croix rouge en gras et 
la prédiction initiale, les axes représentent des variables les autres points (rond bleu ou croix rouge) 
sont les prédictions obtenues après modification des valeurs des variables.  
Par exemple, un point situé à droite de la prédiction originale aura été modifiée uniquement sur la 
variable qui correspond à l’axe des abscisses.  
Enfin plus un point possède une grande taille, plus il est “proche” (en distance) du point initial.

M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’,” presented at the the 22nd ACM SIGKDD International 
Conference, New York, New York, USA, 2016, pp. 1135–1144.

Objectif: convertir les prédictions en un modèle interprétable : séparateur linéaire.

LIME for Precision Medicine (ICU)
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JDZuckerG. J. Katuwal and R. Chen, “Machine Learning Model Interpretability for Precision Medicine,” arXiv.org, vol. q-bio.QM. 28-Oct-2016.



… to answer to the Why question ?
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Interactions such as double negation in sentences and scene interactions in images are common forms of 
complex dependencies captured by state-of-the-art machine learning models.  

MAHE explains how powerful machine learning models capture these interactions 

 MAHE fits a neural network to learn the highly nonlinear decision boundary used to classify the instance. 

Attribution scores of those interactions can then be shown for the data instance, as displayed in Step 3  
➞ The film is positively rated (green) in spite of the word bad being there which is explained by the 
interaction « not bad » 

Beyond « Why Should I Trust You? »… « Can I trust you more » ? 
MAHE Model-Agnostic Hierarchical Explanation
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M. Tsang, Y. Sun, D. Ren, and Y. L. 0002, “Can I trust you more? Model-Agnostic Hierarchical 
Explanations.,” arXiv, vol. stat.ML, 2018.

Partial Dependancy Plots : they show the 
marginal effect of values of one or two variables 
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https://data.world/data-society/pima-indians-diabetes-database

Pregnant

Pedigree Age

Insulin BMI

Glucose

Partial Dependancy Plots : they show the marginal 
effect of values of one or more variables 
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If you are familiar with linear or logistic regression models, partial dependence plots 
can be interpreted similarly to the coefficients in those models. 
But partial dependence plots can capture more complex patterns from your data, and 
they can be used with any model.

https://briangriner.github.io/Partial_Dependence_Plots_presentation-BrianGriner-PrincetonPublicLibrary-4.14.18-updated-4.22.18.html

Y axis: « diabetes partial dependance»
Glucose

BMI



Variable Importance: Global, Model-Agnostic 
or not
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Random forests can be used to rank the importance of variables in a regression or classification problem in a natural way.

To measure the importance of the ith feature after training, the values of the i-th feature are 
permuted among the training data and the out-of-bag error is again computed on this 
perturbed data set. 


The importance score for the i-th feature is computed by averaging the difference in out-
of-bag error before and after the permutation over all trees. 


The score is normalized by the standard deviation of these differences.

https://koalaverse.github.io/vip/articles/vip.html

https://briangriner.github.io/Partial_Dependence_Plots_presentation-BrianGriner-PrincetonPublicLibrary-4.14.18-updated-4.22.18.html

Glucose

BMI

Code Python

Interpretability in Machine Learning

Type A - Interpreting black-box models 

Model distillation (soft DT) 
Looking into the black box 

Type B - Interpreting predictions from black-box models 

Attribution methods: e.g. LIME 

Type  C - Learning interpretable models  
Decision tree, rules, linear model, scoring model, … prototypes 
Encouraging Interpretability as part of the obj. funct. 70
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“Why Should I Trust You?” 
Explaining the Predictions 
of Any Classifier  
[Ribeiro et al. ’16]  

[Olah, distill.pub]  

[ Frosst&Hinton,17]

Des arbres plus performant mais tjs interpretables
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J. M. Luna, E. D. Gennatas, L. H. Ungar, E. Eaton, E. S. Diffenderfer, S. T. Jensen, C. B. Simone, J. H. 
Friedman, T. D. Solberg, and G. Valdes, “Building more accurate decision trees with the additive tree.,” PNAS, 
vol. 116, no. 40, pp. 19887–19893, Oct. 2019.

Constructing optimal logical models.  
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RiskSLIM (Risk-Supersparse-Linear-Integer- Models) algorithm 

C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 1–10, May 2019.



Define interpretability for specific domains 
and create methods accordingly, including 
computer vision  
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Interpretable deep learning : « ‘This look like that’ because 
its reasoning process considers whether ‘this’ part of the 
image looks like ‘that’ prototype. 
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C. Chen, O. Li, A. Barnett, J. Su, and C. Rudin, “This looks 
like that - deep learning for interpretable image 
recognition.,” arXiv, vol. cs.LG, 2018.
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Many packages and libraries
LIME(Local Interpretable Model-Agnostic Explanations) package 

breakDown : Outil agnostique de décomposition des prédictions des 
boîtes noires. Break Down Table montre les contributions de chaque 
variable à une prédiction finale. Break Down Plot présente les 
contributions des variables de manière graphique et concise. Ce package 
fonctionne pour les classificateurs binaires et les modèles de régression 
générale. 

DALEX (Descriptive mAchine Learning EXplanations) : L'ensemble Dalex 
contient divers explicatifs qui aident à comprendre le lien entre les 
variables d'entrée et la sortie du modèle. 

IML(Interpretable Machine Learning) : Agnostic-model explanation tool. 
 ceterisParibus R package 
 « What-if » tool in Google TensorBoard
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https://github.com/ModelOriented/DALEX



Model Exploration Stack
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Descriptive mAchine Learning(DALEX)  
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ceterisParibus: an R package for model 
agnostic visual exploration
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Les diagrammes Ceteris Paribus (Toutes choses étant égales par ailleurs) sont conçus pour présenter des réponses 
modèles autour d'un point unique dans l'espace des caractéristiques.

What if tool in TensorBoard: e.g. Smiling
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https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html

a new feature of the open-source TensorBoard web application, which let users analyze an ML model without writing code. Given pointers to a 
TensorFlow model and a dataset, the What-If Tool offers an interactive visual interface for exploring model results.

Smiling Not Smiling



The What-If Tool: Code-Free Probing of Machine Learning 
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https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html

A bit of R code to compute variable importance
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Conclusion on interprétations
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Predictive accuracy : well addressed by both literature and 
tools 

Descriptive accuracy: more and more approaches (GAFA, 
R package, Python Library, …) 

Relevancy : « A major limitation of existing work on 
interpretable machine learning is that the explanations are 
designed based on the intuition of researchers rather than 
focusing on the demands of endusers » 

M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communications of the ACM, vol. 63, no. 1, pp. 68–
77, Dec. 2019.

Explanation formats that might be more 
understandable and friendly to users  
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Contrastive explanations.   “Why Q rather than R?” The user may compare with 
another real case and raise question: “Why didn’t I get a MRI when my neighbor did?” 
On the other hand, the user may ask: “Why was my request for X treatment rejected ?” 
Since it is compared to an event that has not happened, thus the desirable explanation 
here can also be called counterfactual explanation.“Your MRI would be accepted if 
your invalidity score was Y”  

Selective explanations. Usually, users do not expect an explanation can cover the 
complete cause of a decision. A sparse explanation, which includes a minimal set of 
features that help justify the prediction is preferred, although incompletely. 

Credible explanations. Good explanation might be consistent with prior knowledge 
of general users.  Low credibility could be caused by the poor fidelity of explanation to 
the original model. 

Conversational explanations. Explanations might be delivered as a conversation 
between the explainer and explanation receivers. It means we must consider the social 
context, that is, to whom an explanation is provided, in order to determine the content 
and formats of explanations. 

M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communications of the ACM, vol. 63, 
no. 1, pp. 68–77, Dec. 2019.
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Médecine de précision basée sur la  métagénomique : quelle 
confiance ?
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class	1 class	2Cirrhose	du	foie non	cirrhotique

Signature géniques impliquant plusieurs  
gènes bactériens parmi des millions…

State	of	the	art	models	are	not	easy	to	interpret

Accurate	but	black	boxes	…	

High-Dimension	compatibility	
Rely	on	a	large	number	of	genes	(or	species,	or	functions,	or	taxonomic	level)	
Objective➞ develop algorithms to learn interpretable models 
as accurate as the state of the art on average 87

SVM GLMNET

Inspired by microbial ecosystem interactions

• Microbial ecosystem interactions: the addition, subtraction, and ratio of microbial taxon 
abundances may become signature.  

• Binary models tests whether the cumulated abundance of a set of species is below or 
above a certain threshold. 

• Ternary tests whether the difference of cumulated abundance of a two sets of species 
is below or above a certain threshold.  

• Ratio model tests whether the ratio of two sets of cumulated abundance is above a 
given threshold. 
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« Intrinsically » Interpretable Models

• Conciseness 
• Models that can be applied « manually » to get a 

decision 
• simple operations (+,-,*, opérateurs logiques), integer 

values

y ⇠ x1 � x4 + x5 + x8 � x14

▸  Example 1: Discrete linear models

▸  Example 2: Scoring Models

▸ Interpretability criteria
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X339 = Abundance of 
Veillonella Bacteria

X229 = Abundance of 
Streptococcus parasanguinis 

Bacteria 

X278 = Abundance of 
Eubacterium ventriosum 

Bacteria

X306 = Abundance of  
Lachnospiraceae Bacteria

X339 + X229 - X306 - X278 > 0

Commensurability of data supports 
defining easy to interpret models : BTR 
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The three balance concepts depicting the BTR 
models inspired from microbial ecosystem  

X339 + X229 - X306 < T

X339 + X229 < T X339 / (X229 + X306) > T
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Prifti, E., Y. Chevaleyre, … and J.-D. Zucker 
(In press Gigascience 2020)

Prifti, E., Y. Chevaleyre, B. Hanczar, E. Belda Cuesta, K. Clement, A. Danchin and J.-D. Zucker (In press Gigascience)

Machine	Learning	to	learn	super-sparse,	interpretable	
signatures	as	precise	as	state	of	the	art	on	average
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BTR and SOTA performance across different disease and taxonomic levels in presence/absence data 

BTR performed at least as well as SOTA in 43/54 (80%) of the experiments and outperformed SOTA in 
14/54 (26%), while the SOTA outperformed BTR in 11/54 (20%) of the cases

128224		1252				462				151					52						22							15							9							310		
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BTR models are interpretable compared to state-of-the-art…
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Models are also biologically « justifiable »
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•The	potenIal	compeIIon	between	oral	and	gut	microbes	in	the	
progression	to	cirrhosis	reported	in	previous	studies	is	reflected	
in	best	by	Ter	and	RaIo	models	with	genus	abundance	data,	
that	combine	Veillonella	(oral	bacteria;	opportunisIc	pathogen)	
enriched	in	liver	cirrhosis	pa?ents	at	one	side		

•Bacteroides	plus	Eubacterium	(S9)	or	Coprococcus	(S8)	enriched	

Bariatric surgery improves Type 2 Diabetes 
(T2D)

Improvement of metabolic diseases 
In particular T2D (rapid improvement 

before significant weight loss)

Weight loss

The DiaRem score is used to predict remission
96
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Diarem score: was best score (2013); validated on independent cohorts

Still	et	al	Lancet		endocrinology	2013;	
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 Automated Score Re-Construction of Diarem
98

Score Construction as an Optimization Problem 
99

Nataliya Sokolovska, Yann Chevaleyre and Z. Jean Daniel (AISTATS 2018). 
Sokolovska, N., Y. Chevaleyre and J.-D. Zucker (DA2PL’2016)

Fully Corrective Binning (FCB) algorithm 

The AdDiaRem 

ANR DiagnoLearn N. Sokolovska (PI) 2018-2020
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The training procedure relies on the IBM ILOG CPLEX Optimization Studio2 

which efficiently performs the constrained optimization. In particular, integrity 
constraints are added to the optimisation problem to obtain integer solutions. 

Using our Fully Corrective Binning (FCB) algorithm 



The AdDiaRem 
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Ad-DiaRem

Précision	=	0.79	/	AUROC	=	0.84

5y	Ad-DiaRem

≤11 ≥18

DiaRem (AUC=81%, acc=79%) 
Ad-DiaRem (AUC=84%, acc=78%) 
5y-Ad-DiaRem (AUC=90%, acc=85%)

Another score dedicated to 5y T2D Remission proposed 5yAd-DiaRem (n=175)
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Debedat, J., N. Sokolovska, …J. D. Zucker, K. Clement and J. Aron-
Wisnewsky (2018). "Long-term Relapse of Type 2 Diabetes After 
Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance." 
Diabetes Care. 
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Open question : use of AdDiarem & 5YAdDiarem (at 1Y) to 
improve the follow-up patients prognosed to relapse.  

103

Plan
104

I. 		 Apprentissage	Artificiel	et	médecine	

II.		 Médecine	de	précision	

III.		 Pourquoi	des	modèles	interprétables	en	médecine	?	

IV.		 Machine	Learning	interpretable	trois	approches		

V.	 Deux	exemples	de	modèles	interprétables		

VI.	 Conclusion



Conclusions on precision medicine and AI
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La médecine de précision annonce un bouleversement dans la prise en 
charge des patients, leur parcours de soin et leur suivi grâce à l’IA. 

Nouveaux diagnostics moléculaires (omiques) et d’imagerie 
- stratification des maladies ➞ meilleurs diagnostic, 
- aide au prognostic ➞ meilleurs choix des traitements, 
- désert médicaux ➞ tri des patients les plus à risques. 

Progrès de l’IA et du Deep Learning posent des questions éthiques sur 
son adoption en médecine : équité/confiance/transparence/interprétabilité 

L’IA doit aider les cliniciens (pas se substituer) à être plus efficace mais 
l’interpretabilité est indispensable pour éviter les erreurs et contribuer à la 
recherche de l’étiologie …  

Explications souvent pour des experts… et non des utilisateurs finaux… 

Future of interpretability in ML
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Explanations are contrastive —  People rather ask why event P happened 
instead of some event Q.➞  social and computational consequences for XAI 

Explanation are selected (in a biased manner) — Humans are adept at 
selecting one or two causes from a sometimes infinite number of causes to be 
THE explanation. 

Explanation using probabilities probably don’t matter so much — statistical 
relationships in explanation is not as effective as referring to causes.

T. Miller, “Explanation in artificial intelligence: Insights from the social 
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, Feb. 2019.

Milou, l’interpretabilité et sa consommation 
de Deep Learning
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Je veux une bonne 
perf. en classification !

Oh ! du bon Deep 
Learning ! 

Aie ! … Mais c’est une 
boîte noire !

Pour la confiance, la 
compréhension tu dois 

pouvoir expliquer tes choix !

Mais les boîtes noires peuvent 
expliquer… a posteriori…

Et, avec beaucoup de données seuls les 
grands modèles ont de bons résultats  

Que fais-tu ? 
Et l’explicabilité ?

RGPD

GAFA

Jean-Daniel Zucker
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